Sandi Baressi Segota, N. Anđelić, J. Kudláček, R. Čep
{"title":"基于人工神经网络的单位重量位移剩余阻力预测","authors":"Sandi Baressi Segota, N. Anđelić, J. Kudláček, R. Čep","doi":"10.18048/2019.57.01","DOIUrl":null,"url":null,"abstract":"This paper proposes the usage of an Artificial neural network (ANN) to predict the values of the residuary resistance per unit weight of displacement from the variables describing ship’s dimensions. For this purpose, a Multilayer perceptron (MLP) regressor ANN is used, with the grid search technique being applied to determine the appropriate properties of the model. After the model training, its quality is determined using R2 value and a Bland-Altman (BA) graph which shows a majority of values predicted falling within the 95% confidence interval. The best model has four hidden layers with ten, twenty, twenty and ten nodes respectively, uses a relu activation function with a constant learning rate of 0.01 and the regularization parameter L2 value of 0.001. The achieved model shows a high regression quality, lacking precision in the higher value range due to the lack of data.","PeriodicalId":366194,"journal":{"name":"Journal of Maritime & Transportation Science","volume":"350 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Artificial neural network for predicting values of residuary resistance per unit weight of displacement\",\"authors\":\"Sandi Baressi Segota, N. Anđelić, J. Kudláček, R. Čep\",\"doi\":\"10.18048/2019.57.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the usage of an Artificial neural network (ANN) to predict the values of the residuary resistance per unit weight of displacement from the variables describing ship’s dimensions. For this purpose, a Multilayer perceptron (MLP) regressor ANN is used, with the grid search technique being applied to determine the appropriate properties of the model. After the model training, its quality is determined using R2 value and a Bland-Altman (BA) graph which shows a majority of values predicted falling within the 95% confidence interval. The best model has four hidden layers with ten, twenty, twenty and ten nodes respectively, uses a relu activation function with a constant learning rate of 0.01 and the regularization parameter L2 value of 0.001. The achieved model shows a high regression quality, lacking precision in the higher value range due to the lack of data.\",\"PeriodicalId\":366194,\"journal\":{\"name\":\"Journal of Maritime & Transportation Science\",\"volume\":\"350 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Maritime & Transportation Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18048/2019.57.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Maritime & Transportation Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18048/2019.57.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Artificial neural network for predicting values of residuary resistance per unit weight of displacement
This paper proposes the usage of an Artificial neural network (ANN) to predict the values of the residuary resistance per unit weight of displacement from the variables describing ship’s dimensions. For this purpose, a Multilayer perceptron (MLP) regressor ANN is used, with the grid search technique being applied to determine the appropriate properties of the model. After the model training, its quality is determined using R2 value and a Bland-Altman (BA) graph which shows a majority of values predicted falling within the 95% confidence interval. The best model has four hidden layers with ten, twenty, twenty and ten nodes respectively, uses a relu activation function with a constant learning rate of 0.01 and the regularization parameter L2 value of 0.001. The achieved model shows a high regression quality, lacking precision in the higher value range due to the lack of data.