{"title":"激活素受体样激酶4表达减少通过抑制TGFβ信号通路改善心肌缺血/再灌注损伤","authors":"Mantian Chen, Yinggang Sun, Qian Wang, Yigang Li","doi":"10.1155/2022/5242323","DOIUrl":null,"url":null,"abstract":"The activation of activin receptor-like kinase 4 (ALK4) signaling plays a pivotal role in the pressure-overloaded heart, and haplodeficiency of ALK4 can alleviate cardiac fibrosis secondary to myocardial infarction and preserve cardiac function through partially inactivating the Smad3/4 pathway. However, whether transforming growth factor (TGF) β signaling is involved in the beneficial effects of ALK4 knockdown on the ischemic heart is still unclear. This study was undertaken to investigate the change in the TGFβ signaling after ALK4 knockdown in vivo and in vitro. Forty C57BL/6J mice were randomized into ALK4+/- ischemia/reperfusion (I/R) group (ALK4+/-+I/R, n = 10), ALK4+/- sham group (ALK4+/-+sham, n = 10), wild-type sham group (WT+sham, n = 10), and WT I/R group (WT+I/R, n = 10). Heart histology and the levels of cytokines related to antioxidant and inflammation, as well as protein and mRNA expressions of molecules associated with TGFβ pathway, were examined in different groups. Our results showed that the reduction of ALK4 expression ameliorated myocardial I/R injury through inhibiting TGFβ signaling pathway. Our findings indicate that ALK4 may become a novel target for the therapy of myocardial I/R injury.","PeriodicalId":313227,"journal":{"name":"Analytical Cellular Pathology (Amsterdam)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction of Activin Receptor-Like Kinase 4 Expression Ameliorates Myocardial Ischemia/Reperfusion Injury through Inhibiting TGFβ Signaling Pathway\",\"authors\":\"Mantian Chen, Yinggang Sun, Qian Wang, Yigang Li\",\"doi\":\"10.1155/2022/5242323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The activation of activin receptor-like kinase 4 (ALK4) signaling plays a pivotal role in the pressure-overloaded heart, and haplodeficiency of ALK4 can alleviate cardiac fibrosis secondary to myocardial infarction and preserve cardiac function through partially inactivating the Smad3/4 pathway. However, whether transforming growth factor (TGF) β signaling is involved in the beneficial effects of ALK4 knockdown on the ischemic heart is still unclear. This study was undertaken to investigate the change in the TGFβ signaling after ALK4 knockdown in vivo and in vitro. Forty C57BL/6J mice were randomized into ALK4+/- ischemia/reperfusion (I/R) group (ALK4+/-+I/R, n = 10), ALK4+/- sham group (ALK4+/-+sham, n = 10), wild-type sham group (WT+sham, n = 10), and WT I/R group (WT+I/R, n = 10). Heart histology and the levels of cytokines related to antioxidant and inflammation, as well as protein and mRNA expressions of molecules associated with TGFβ pathway, were examined in different groups. Our results showed that the reduction of ALK4 expression ameliorated myocardial I/R injury through inhibiting TGFβ signaling pathway. Our findings indicate that ALK4 may become a novel target for the therapy of myocardial I/R injury.\",\"PeriodicalId\":313227,\"journal\":{\"name\":\"Analytical Cellular Pathology (Amsterdam)\",\"volume\":\"215 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Cellular Pathology (Amsterdam)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/5242323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Cellular Pathology (Amsterdam)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/5242323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
激活素受体样激酶4 (activin receptor-like kinase 4, ALK4)信号的激活在压力过载的心脏中起着关键作用,ALK4单倍体缺失可以通过部分失活Smad3/4通路,减轻心肌梗死继发的心肌纤维化,维持心功能。然而,转化生长因子(TGF) β信号是否参与了ALK4敲低对缺血心脏的有益作用尚不清楚。本研究旨在探讨体内和体外敲除ALK4后tgf - β信号通路的变化。将40只C57BL/6J小鼠随机分为ALK4+/-缺血/再灌注(I/R)组(ALK4+/-+I/R, n = 10)、ALK4+/-假手术组(ALK4+/-+sham, n = 10)、野生型假手术组(WT+sham, n = 10)和WT I/R组(WT+I/R, n = 10)。检测各组心脏组织学、抗氧化和炎症相关细胞因子水平以及TGFβ通路相关分子蛋白和mRNA表达。结果表明,降低ALK4表达可通过抑制tgf - β信号通路改善心肌I/R损伤。我们的研究结果表明,ALK4可能成为心肌I/R损伤治疗的新靶点。
Reduction of Activin Receptor-Like Kinase 4 Expression Ameliorates Myocardial Ischemia/Reperfusion Injury through Inhibiting TGFβ Signaling Pathway
The activation of activin receptor-like kinase 4 (ALK4) signaling plays a pivotal role in the pressure-overloaded heart, and haplodeficiency of ALK4 can alleviate cardiac fibrosis secondary to myocardial infarction and preserve cardiac function through partially inactivating the Smad3/4 pathway. However, whether transforming growth factor (TGF) β signaling is involved in the beneficial effects of ALK4 knockdown on the ischemic heart is still unclear. This study was undertaken to investigate the change in the TGFβ signaling after ALK4 knockdown in vivo and in vitro. Forty C57BL/6J mice were randomized into ALK4+/- ischemia/reperfusion (I/R) group (ALK4+/-+I/R, n = 10), ALK4+/- sham group (ALK4+/-+sham, n = 10), wild-type sham group (WT+sham, n = 10), and WT I/R group (WT+I/R, n = 10). Heart histology and the levels of cytokines related to antioxidant and inflammation, as well as protein and mRNA expressions of molecules associated with TGFβ pathway, were examined in different groups. Our results showed that the reduction of ALK4 expression ameliorated myocardial I/R injury through inhibiting TGFβ signaling pathway. Our findings indicate that ALK4 may become a novel target for the therapy of myocardial I/R injury.