电子测试异常响应在线检测系统

M. Ueno, Toshio Okamoto
{"title":"电子测试异常响应在线检测系统","authors":"M. Ueno, Toshio Okamoto","doi":"10.1109/ICALT.2008.171","DOIUrl":null,"url":null,"abstract":"We have developed a method for online detection of examinees' aberrant responses. This method uses response time data in e-testing. Unique features of this method are: 1. It includes an outlier detection method using Bayesian predictive distribution. 2. It can be used with small-sample sets. 3. It provides a unified statistical test method of various statistical tests by changing hyper-parameters and provides more accurate test results than commonly used methods. 4. Outlier statistics are estimated by considering both examinee abilities and the difficulty level of items. We evaluated this system, and results of our evaluation show that it is effective.","PeriodicalId":128089,"journal":{"name":"2008 Eighth IEEE International Conference on Advanced Learning Technologies","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"System for Online Detection of Aberrant Responses in E-Testing\",\"authors\":\"M. Ueno, Toshio Okamoto\",\"doi\":\"10.1109/ICALT.2008.171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed a method for online detection of examinees' aberrant responses. This method uses response time data in e-testing. Unique features of this method are: 1. It includes an outlier detection method using Bayesian predictive distribution. 2. It can be used with small-sample sets. 3. It provides a unified statistical test method of various statistical tests by changing hyper-parameters and provides more accurate test results than commonly used methods. 4. Outlier statistics are estimated by considering both examinee abilities and the difficulty level of items. We evaluated this system, and results of our evaluation show that it is effective.\",\"PeriodicalId\":128089,\"journal\":{\"name\":\"2008 Eighth IEEE International Conference on Advanced Learning Technologies\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Eighth IEEE International Conference on Advanced Learning Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALT.2008.171\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Advanced Learning Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2008.171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们开发了一种在线检测考生异常反应的方法。该方法在电子测试中使用响应时间数据。该方法的独特之处在于:1。它包括一种利用贝叶斯预测分布的离群值检测方法。2. 它可以用于小样本集。3.通过改变超参数,为各种统计检验提供了统一的统计检验方法,提供了比常用方法更准确的检验结果。4. 通过考虑考生的能力和题目的难度来估计异常统计量。对该系统进行了评价,评价结果表明该系统是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
System for Online Detection of Aberrant Responses in E-Testing
We have developed a method for online detection of examinees' aberrant responses. This method uses response time data in e-testing. Unique features of this method are: 1. It includes an outlier detection method using Bayesian predictive distribution. 2. It can be used with small-sample sets. 3. It provides a unified statistical test method of various statistical tests by changing hyper-parameters and provides more accurate test results than commonly used methods. 4. Outlier statistics are estimated by considering both examinee abilities and the difficulty level of items. We evaluated this system, and results of our evaluation show that it is effective.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Supporting Conceptualisations and Learning through Multimodality Making Use of User-Generated Content and Contextual Metadata Collected during Ubiquitous Learning Activities 3D Animated Facial Expression and Autism in Taiwan A Proposal for a Component-Based LMS in Accordance with PoEML Semantic Document Management for Collaborative Learning Object Authoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1