ELZAR:使用英特尔AVX的三重模块化冗余(实践经验报告)

Dmitrii Kuvaiskii, O. Oleksenko, Pramod Bhatotia, Pascal Felber, C. Fetzer
{"title":"ELZAR:使用英特尔AVX的三重模块化冗余(实践经验报告)","authors":"Dmitrii Kuvaiskii, O. Oleksenko, Pramod Bhatotia, Pascal Felber, C. Fetzer","doi":"10.1109/DSN.2016.65","DOIUrl":null,"url":null,"abstract":"Instruction-Level Redundancy (ILR) is a well-known approach to tolerate transient CPU faults. It replicates instructions in a program and inserts periodic checks to detect and correct CPU faults using majority voting, which essentially requires three copies of each instruction and leads to high performance overheads. As SIMD technology can operate simultaneously on several copies of the data, it appears to be a good candidate for decreasing these overheads. To verify this hypothesis, we propose ELZAR, a compiler framework that transforms unmodified multithreaded applications to support triple modular redundancy using Intel AVX extensions for vectorization. Our experience with several benchmark suites and real-world case-studies yields mixed results: while SIMD may be beneficial for some workloads, e.g., CPU-intensive ones with many floating-point operations, it exposes higher overhead than ILR in many applications we tested.","PeriodicalId":102292,"journal":{"name":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"352 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ELZAR: Triple Modular Redundancy Using Intel AVX (Practical Experience Report)\",\"authors\":\"Dmitrii Kuvaiskii, O. Oleksenko, Pramod Bhatotia, Pascal Felber, C. Fetzer\",\"doi\":\"10.1109/DSN.2016.65\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instruction-Level Redundancy (ILR) is a well-known approach to tolerate transient CPU faults. It replicates instructions in a program and inserts periodic checks to detect and correct CPU faults using majority voting, which essentially requires three copies of each instruction and leads to high performance overheads. As SIMD technology can operate simultaneously on several copies of the data, it appears to be a good candidate for decreasing these overheads. To verify this hypothesis, we propose ELZAR, a compiler framework that transforms unmodified multithreaded applications to support triple modular redundancy using Intel AVX extensions for vectorization. Our experience with several benchmark suites and real-world case-studies yields mixed results: while SIMD may be beneficial for some workloads, e.g., CPU-intensive ones with many floating-point operations, it exposes higher overhead than ILR in many applications we tested.\",\"PeriodicalId\":102292,\"journal\":{\"name\":\"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"volume\":\"352 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2016.65\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2016.65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

指令级冗余(ILR)是一种众所周知的容忍暂态CPU故障的方法。它复制程序中的指令,并插入定期检查,以使用多数投票检测和纠正CPU故障,这实际上需要每个指令的三个副本,并导致高性能开销。由于SIMD技术可以同时对数据的多个副本进行操作,因此它似乎是减少这些开销的良好选择。为了验证这一假设,我们提出了ELZAR,这是一个编译器框架,它将未经修改的多线程应用程序转换为支持三模冗余,使用英特尔AVX扩展进行矢量化。我们对几个基准测试套件和实际案例研究的经验产生了不同的结果:虽然SIMD可能对某些工作负载有益,例如,具有许多浮点操作的cpu密集型工作负载,但在我们测试的许多应用程序中,它比ILR暴露出更高的开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ELZAR: Triple Modular Redundancy Using Intel AVX (Practical Experience Report)
Instruction-Level Redundancy (ILR) is a well-known approach to tolerate transient CPU faults. It replicates instructions in a program and inserts periodic checks to detect and correct CPU faults using majority voting, which essentially requires three copies of each instruction and leads to high performance overheads. As SIMD technology can operate simultaneously on several copies of the data, it appears to be a good candidate for decreasing these overheads. To verify this hypothesis, we propose ELZAR, a compiler framework that transforms unmodified multithreaded applications to support triple modular redundancy using Intel AVX extensions for vectorization. Our experience with several benchmark suites and real-world case-studies yields mixed results: while SIMD may be beneficial for some workloads, e.g., CPU-intensive ones with many floating-point operations, it exposes higher overhead than ILR in many applications we tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ELZAR: Triple Modular Redundancy Using Intel AVX (Practical Experience Report) DomainProfiler: Discovering Domain Names Abused in Future OSIRIS: Efficient and Consistent Recovery of Compartmentalized Operating Systems HSFI: Accurate Fault Injection Scalable to Large Code Bases Secure and Efficient Multi-Variant Execution Using Hardware-Assisted Process Virtualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1