复杂共现网络的超图建模与可视化

X. Ouvrard , J.M. Le Goff , S. Marchand-Maillet
{"title":"复杂共现网络的超图建模与可视化","authors":"X. Ouvrard ,&nbsp;J.M. Le Goff ,&nbsp;S. Marchand-Maillet","doi":"10.1016/j.endm.2018.11.011","DOIUrl":null,"url":null,"abstract":"<div><p>Finding inherent or processed links within a dataset allows to discover potential knowledge. The main contribution of this article is to define a global framework that enables optimal knowledge discovery by visually rendering co-occurences (i.e. groups of linked data instances attached to a metadata reference) – either inherently present or processed – from a dataset as facets. Hypergraphs are well suited for modeling co-occurences since they support multi-adicity whereas graphs only support pairwise relationships. This article introduces an efficient navigation between different facets of an information space based on hypergraph modelisation and visualisation.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":"70 ","pages":"Pages 65-70"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.11.011","citationCount":"5","resultStr":"{\"title\":\"Hypergraph Modeling and Visualisation of Complex Co-occurence Networks\",\"authors\":\"X. Ouvrard ,&nbsp;J.M. Le Goff ,&nbsp;S. Marchand-Maillet\",\"doi\":\"10.1016/j.endm.2018.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Finding inherent or processed links within a dataset allows to discover potential knowledge. The main contribution of this article is to define a global framework that enables optimal knowledge discovery by visually rendering co-occurences (i.e. groups of linked data instances attached to a metadata reference) – either inherently present or processed – from a dataset as facets. Hypergraphs are well suited for modeling co-occurences since they support multi-adicity whereas graphs only support pairwise relationships. This article introduces an efficient navigation between different facets of an information space based on hypergraph modelisation and visualisation.</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":\"70 \",\"pages\":\"Pages 65-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.11.011\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571065318302063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318302063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

在数据集中查找固有的或经过处理的链接可以发现潜在的知识。本文的主要贡献是定义了一个全局框架,通过可视化地呈现来自数据集的共现(即附加到元数据引用的链接数据实例组)——无论是固有的还是经过处理的——来实现最佳的知识发现。超图非常适合于共现建模,因为它们支持多重性,而图只支持成对关系。本文介绍了基于超图建模和可视化的信息空间的不同方面之间的有效导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hypergraph Modeling and Visualisation of Complex Co-occurence Networks

Finding inherent or processed links within a dataset allows to discover potential knowledge. The main contribution of this article is to define a global framework that enables optimal knowledge discovery by visually rendering co-occurences (i.e. groups of linked data instances attached to a metadata reference) – either inherently present or processed – from a dataset as facets. Hypergraphs are well suited for modeling co-occurences since they support multi-adicity whereas graphs only support pairwise relationships. This article introduces an efficient navigation between different facets of an information space based on hypergraph modelisation and visualisation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Notes in Discrete Mathematics
Electronic Notes in Discrete Mathematics Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
期刊最新文献
Preface Minimal condition for shortest vectors in lattices of low dimension Enumerating words with forbidden factors Polygon-circle and word-representable graphs On an arithmetic triangle of numbers arising from inverses of analytic functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1