RNS和PMNS的软件比较

Laurent-Stéphane Didier, J. Robert, Fangan-Yssouf Dosso, Nadia El Mrabet
{"title":"RNS和PMNS的软件比较","authors":"Laurent-Stéphane Didier, J. Robert, Fangan-Yssouf Dosso, Nadia El Mrabet","doi":"10.1109/ARITH54963.2022.00025","DOIUrl":null,"url":null,"abstract":"The Polynomial Modular Number System (PMNS) and the Residue Number System (RNS) are integer number systems which aim to speed up modular arithmetic. Their parallel properties make them suitable for the implementation of cryptographic applications on modern processors with SIMD instructions. In this work, we will show the implementation choices made for the modular multiplication in both systems and compare their implementation performances for several sizes of moduli. We target the Intel 64-bit sequential instruction set and the Intel AVX-512 vector instruction set. This instruction set allows significant speed-ups up to 1 621 bit size moduli, while the vectorized PMNS implementation is up to 2.5 times faster than the vectorized RNS, though the vectorized RNS becomes slightly better for 3 251 bits, due to the difficulty to find a PMNS with a suitable parameter $n$. The vectorized RNS implementations reach performance levels close the state-of-the-art GMP library, while the retired instruction counts are lower for sizes between 401 and 3 251 bits.","PeriodicalId":268661,"journal":{"name":"2022 IEEE 29th Symposium on Computer Arithmetic (ARITH)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A software comparison of RNS and PMNS\",\"authors\":\"Laurent-Stéphane Didier, J. Robert, Fangan-Yssouf Dosso, Nadia El Mrabet\",\"doi\":\"10.1109/ARITH54963.2022.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Polynomial Modular Number System (PMNS) and the Residue Number System (RNS) are integer number systems which aim to speed up modular arithmetic. Their parallel properties make them suitable for the implementation of cryptographic applications on modern processors with SIMD instructions. In this work, we will show the implementation choices made for the modular multiplication in both systems and compare their implementation performances for several sizes of moduli. We target the Intel 64-bit sequential instruction set and the Intel AVX-512 vector instruction set. This instruction set allows significant speed-ups up to 1 621 bit size moduli, while the vectorized PMNS implementation is up to 2.5 times faster than the vectorized RNS, though the vectorized RNS becomes slightly better for 3 251 bits, due to the difficulty to find a PMNS with a suitable parameter $n$. The vectorized RNS implementations reach performance levels close the state-of-the-art GMP library, while the retired instruction counts are lower for sizes between 401 and 3 251 bits.\",\"PeriodicalId\":268661,\"journal\":{\"name\":\"2022 IEEE 29th Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 29th Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH54963.2022.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 29th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH54963.2022.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

多项式模数系统(PMNS)和剩余数系统(RNS)是旨在提高模运算速度的整数系统。它们的并行特性使它们适合在具有SIMD指令的现代处理器上实现加密应用程序。在这项工作中,我们将展示在两个系统中为模乘法所做的实现选择,并比较它们在不同模大小下的实现性能。我们的目标是英特尔64位顺序指令集和英特尔AVX-512矢量指令集。该指令集允许显著加速高达1 621位大小模量,而矢量化的PMNS实现比矢量化的RNS快2.5倍,尽管矢量化的RNS在3 251位时略好,因为很难找到具有合适参数的PMNS。矢量化RNS实现的性能水平接近最先进的GMP库,而退役指令计数在401到3251位之间的大小更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A software comparison of RNS and PMNS
The Polynomial Modular Number System (PMNS) and the Residue Number System (RNS) are integer number systems which aim to speed up modular arithmetic. Their parallel properties make them suitable for the implementation of cryptographic applications on modern processors with SIMD instructions. In this work, we will show the implementation choices made for the modular multiplication in both systems and compare their implementation performances for several sizes of moduli. We target the Intel 64-bit sequential instruction set and the Intel AVX-512 vector instruction set. This instruction set allows significant speed-ups up to 1 621 bit size moduli, while the vectorized PMNS implementation is up to 2.5 times faster than the vectorized RNS, though the vectorized RNS becomes slightly better for 3 251 bits, due to the difficulty to find a PMNS with a suitable parameter $n$. The vectorized RNS implementations reach performance levels close the state-of-the-art GMP library, while the retired instruction counts are lower for sizes between 401 and 3 251 bits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced Floating-Point Adder with Full Denormal Support A BF16 FMA is All You Need for DNN Training Foreword: ARITH 2022 Approximate Recursive Multipliers Using Low Power Building Blocks The CORE-MATH Project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1