检验自相似远程通信模型的高斯假设

S. Bates, S. McLaughlin
{"title":"检验自相似远程通信模型的高斯假设","authors":"S. Bates, S. McLaughlin","doi":"10.1109/HOST.1997.613564","DOIUrl":null,"url":null,"abstract":"Both the fractional Brownian motion (fBm) and the autoregressive integrated moving average (ARIMA) models have been applied to teletraffic scenarios in recent years. These models became popular after the discovery that Ethernet and VBR video data appear to possess the property of self-similarity. However the results presented in this paper suggest that Ethernet data is more impulsive than traffic generated by these models.","PeriodicalId":305928,"journal":{"name":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Testing the Gaussian assumption for self-similar teletraffic models\",\"authors\":\"S. Bates, S. McLaughlin\",\"doi\":\"10.1109/HOST.1997.613564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both the fractional Brownian motion (fBm) and the autoregressive integrated moving average (ARIMA) models have been applied to teletraffic scenarios in recent years. These models became popular after the discovery that Ethernet and VBR video data appear to possess the property of self-similarity. However the results presented in this paper suggest that Ethernet data is more impulsive than traffic generated by these models.\",\"PeriodicalId\":305928,\"journal\":{\"name\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOST.1997.613564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1997.613564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

分数阶布朗运动(fBm)和自回归积分移动平均(ARIMA)模型近年来在远程交通场景中得到了应用。这些模型是在发现以太网和VBR视频数据具有自相似的特性后流行起来的。然而,本文的结果表明,以太网数据比这些模型产生的流量更具冲动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing the Gaussian assumption for self-similar teletraffic models
Both the fractional Brownian motion (fBm) and the autoregressive integrated moving average (ARIMA) models have been applied to teletraffic scenarios in recent years. These models became popular after the discovery that Ethernet and VBR video data appear to possess the property of self-similarity. However the results presented in this paper suggest that Ethernet data is more impulsive than traffic generated by these models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narrow band source separation in wide band context applications to array signal processing Higher-order statistics for tissue characterization from ultrasound images An iterative mixed norm image restoration algorithm Comparison between asymmetric generalized Gaussian (AGG) and symmetric-/spl alpha/-stable (S/spl alpha/S) noise models for signal estimation in non Gaussian environments Linear algebraic approaches for (almost) periodic moving average system identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1