非线性在线学习-核SMF方法

Kewei Chen, Stefan Werner, A. Kuh, Yih-Fang Huang
{"title":"非线性在线学习-核SMF方法","authors":"Kewei Chen, Stefan Werner, A. Kuh, Yih-Fang Huang","doi":"10.23919/APSIPA.2018.8659670","DOIUrl":null,"url":null,"abstract":"Principles of adaptive filtering and signal processing are useful tools in machine learning. Nonlinear adaptive filtering techniques, though often are analytically intractable, are more suitable for dealing with complex practical problems. This paper develops a nonlinear online learning algorithm with a kernel set-membership filtering (SMF) approach. One of the main features in the SMF framework is its data-dependent selective update of parameter estimates. Accordingly, the kernel SMF algorithm can not only selectively update its parameter estimates by making discerning use of the input data, but also selectively increase the dimension of the kernel expansions with a model sparsification criterion. This results in more sparse kernel expansions and less computation in the update of parameter estimates, making the proposed online learning algorithm more effective. Both analytical and numerical results are presented in this paper to corroborate the above statements.","PeriodicalId":287799,"journal":{"name":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonlinear Online Learning — A Kernel SMF Approach\",\"authors\":\"Kewei Chen, Stefan Werner, A. Kuh, Yih-Fang Huang\",\"doi\":\"10.23919/APSIPA.2018.8659670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principles of adaptive filtering and signal processing are useful tools in machine learning. Nonlinear adaptive filtering techniques, though often are analytically intractable, are more suitable for dealing with complex practical problems. This paper develops a nonlinear online learning algorithm with a kernel set-membership filtering (SMF) approach. One of the main features in the SMF framework is its data-dependent selective update of parameter estimates. Accordingly, the kernel SMF algorithm can not only selectively update its parameter estimates by making discerning use of the input data, but also selectively increase the dimension of the kernel expansions with a model sparsification criterion. This results in more sparse kernel expansions and less computation in the update of parameter estimates, making the proposed online learning algorithm more effective. Both analytical and numerical results are presented in this paper to corroborate the above statements.\",\"PeriodicalId\":287799,\"journal\":{\"name\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPA.2018.8659670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPA.2018.8659670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

自适应滤波和信号处理原理是机器学习中有用的工具。非线性自适应滤波技术虽然在分析上难以处理,但更适合于处理复杂的实际问题。提出了一种基于核集隶属度滤波(SMF)的非线性在线学习算法。SMF框架的主要特征之一是参数估计的数据依赖选择性更新。因此,核SMF算法不仅可以通过识别输入数据有选择地更新其参数估计,还可以通过模型稀疏化准则有选择地增加核展开的维数。这使得更稀疏的核展开和更少的参数估计更新计算,使所提出的在线学习算法更加有效。本文给出了解析和数值结果来证实上述说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear Online Learning — A Kernel SMF Approach
Principles of adaptive filtering and signal processing are useful tools in machine learning. Nonlinear adaptive filtering techniques, though often are analytically intractable, are more suitable for dealing with complex practical problems. This paper develops a nonlinear online learning algorithm with a kernel set-membership filtering (SMF) approach. One of the main features in the SMF framework is its data-dependent selective update of parameter estimates. Accordingly, the kernel SMF algorithm can not only selectively update its parameter estimates by making discerning use of the input data, but also selectively increase the dimension of the kernel expansions with a model sparsification criterion. This results in more sparse kernel expansions and less computation in the update of parameter estimates, making the proposed online learning algorithm more effective. Both analytical and numerical results are presented in this paper to corroborate the above statements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Epileptic Focus Localization Based on iEEG by Using Positive Unlabeled (PU) Learning Image Retrieval using CNN and Low-level Feature Fusion for Crime Scene Investigation Image Database Privacy-Preserving SVM Computing in the Encrypted Domain Graphical User Interface for Medical Deep Learning - Application to Magnetic Resonance Imaging Statistical-Mechanical Analysis of the Second-Order Adaptive Volterra Filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1