深层共晶溶剂在上游油气工业中的潜力

Z. Hamdi, Shaberdi Koshekov, M. Bataee
{"title":"深层共晶溶剂在上游油气工业中的潜力","authors":"Z. Hamdi, Shaberdi Koshekov, M. Bataee","doi":"10.2118/214427-ms","DOIUrl":null,"url":null,"abstract":"\n Oil and gas will be the main part of our future energy sources, despite of emerging and expanding of renewable energies. Enhanced Oil Recovery (EOR) plays an important role in the future oil and gas industry as the conventional oil reserves will shrink. Heavy oil reservoirs will be the main target of EOR methods because of the high number of existing heavy oil reservoirs. Surfactants are the most efficient chemical EOR method for many unconventional reservoirs as previous studies suggest. The problem with this EOR method is that these projects have high costs and raised environmental concerns. Ionic liquids (ILs) are introduced as an alternative material to surfactants, however, the cost of their synthesis and purification processes are high. Besides, some of them are toxic and have non-biodegradable properties which limit their commercial usage. Recently, a new form of ILs produced and called Deep Eutectic Solvents (DESs). The discovered material is more affordable and environmentally friendly and hence, it is considered to be an alternative material for existing conventional ILs. DESs are cheap, easy to produce, non-toxic, reusable, bio-degradable, and environmentally friendly. These materials consist of two or more cheap and safe components which will form a eutectic mixture. The melting point of the final mixture is lower than its components. In this study, the effectiveness of DESs in the EOR is analysed and evaluated to consider it as a new injection material for chemical EOR. This material has specific properties which improve the efficiency of EOR processes. Some of the favourable properties are stable emulsion between phases, interfacial tension (IFT) reduction, wettability change, recovery enhancement, and avoiding formation damage which is discussed and analysed in this paper. Moreover, the cost of the process is hugely reduced compared with other chemical injection methods. As the result, the main factor for the recovery enhancement is wettability alteration and the chance of viscosity. Besides, only malonic and acid-based DESs formed emulsions with oil, and the other types of DESs did not show emulsification properties. The IFT value increased for heavy oil reservoirs, while for reservoirs with light/medium oil IFT was reduced. Furthermore, DESs did not show formation damage which is a bonus point for this method. As the final result, Choline Chloride Glycerol showed the best recovery with an extra 30% to the original production.","PeriodicalId":306106,"journal":{"name":"Day 4 Thu, June 08, 2023","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential of Deep Eutectic Solvents in the Upstream Oil and Gas Industry\",\"authors\":\"Z. Hamdi, Shaberdi Koshekov, M. Bataee\",\"doi\":\"10.2118/214427-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Oil and gas will be the main part of our future energy sources, despite of emerging and expanding of renewable energies. Enhanced Oil Recovery (EOR) plays an important role in the future oil and gas industry as the conventional oil reserves will shrink. Heavy oil reservoirs will be the main target of EOR methods because of the high number of existing heavy oil reservoirs. Surfactants are the most efficient chemical EOR method for many unconventional reservoirs as previous studies suggest. The problem with this EOR method is that these projects have high costs and raised environmental concerns. Ionic liquids (ILs) are introduced as an alternative material to surfactants, however, the cost of their synthesis and purification processes are high. Besides, some of them are toxic and have non-biodegradable properties which limit their commercial usage. Recently, a new form of ILs produced and called Deep Eutectic Solvents (DESs). The discovered material is more affordable and environmentally friendly and hence, it is considered to be an alternative material for existing conventional ILs. DESs are cheap, easy to produce, non-toxic, reusable, bio-degradable, and environmentally friendly. These materials consist of two or more cheap and safe components which will form a eutectic mixture. The melting point of the final mixture is lower than its components. In this study, the effectiveness of DESs in the EOR is analysed and evaluated to consider it as a new injection material for chemical EOR. This material has specific properties which improve the efficiency of EOR processes. Some of the favourable properties are stable emulsion between phases, interfacial tension (IFT) reduction, wettability change, recovery enhancement, and avoiding formation damage which is discussed and analysed in this paper. Moreover, the cost of the process is hugely reduced compared with other chemical injection methods. As the result, the main factor for the recovery enhancement is wettability alteration and the chance of viscosity. Besides, only malonic and acid-based DESs formed emulsions with oil, and the other types of DESs did not show emulsification properties. The IFT value increased for heavy oil reservoirs, while for reservoirs with light/medium oil IFT was reduced. Furthermore, DESs did not show formation damage which is a bonus point for this method. As the final result, Choline Chloride Glycerol showed the best recovery with an extra 30% to the original production.\",\"PeriodicalId\":306106,\"journal\":{\"name\":\"Day 4 Thu, June 08, 2023\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, June 08, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/214427-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, June 08, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/214427-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管可再生能源正在兴起和扩大,但石油和天然气仍将是我们未来能源的主要部分。随着常规石油储量的减少,提高采收率(EOR)在未来的油气行业中扮演着重要的角色。由于现有稠油油藏数量众多,稠油油藏将成为提高采收率方法的主要目标。以往的研究表明,对于许多非常规油藏来说,表面活性剂是最有效的化学提高采收率方法。这种提高采收率方法的问题在于这些项目成本高,并且引起了环境问题。离子液体作为表面活性剂的一种替代材料被引入,但其合成和纯化过程的成本很高。此外,其中一些是有毒的,具有不可生物降解的特性,这限制了它们的商业用途。近年来,一种新型的聚合物被称为深共晶溶剂(DESs)。所发现的材料更便宜,更环保,因此被认为是现有传统il的替代材料。DESs价格便宜,易于生产,无毒,可重复使用,可生物降解,环保。这些材料由两种或两种以上便宜而安全的成分组成,它们将形成共晶混合物。最终混合物的熔点低于其组分。本文分析和评价了DESs在提高采收率中的效果,认为它是一种新的化学提高采收率注入材料。这种材料具有特殊的性能,可以提高EOR过程的效率。对其有利的性能有相间乳化稳定、界面张力降低、润湿性改变、采收率提高、避免地层损害等方面进行了讨论和分析。此外,与其他化学注射方法相比,该工艺的成本大大降低。因此,提高采收率的主要因素是润湿性的改变和粘度的变化。此外,只有丙二酸基和酸基DESs与油形成乳化,其他类型的DESs均不表现出乳化性能。稠油油藏的IFT值增加,而轻/中油油藏的IFT值降低。此外,DESs没有显示地层损害,这是该方法的一个优点。结果表明,氯化胆碱甘油的回收率最高,比原产量高出30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Potential of Deep Eutectic Solvents in the Upstream Oil and Gas Industry
Oil and gas will be the main part of our future energy sources, despite of emerging and expanding of renewable energies. Enhanced Oil Recovery (EOR) plays an important role in the future oil and gas industry as the conventional oil reserves will shrink. Heavy oil reservoirs will be the main target of EOR methods because of the high number of existing heavy oil reservoirs. Surfactants are the most efficient chemical EOR method for many unconventional reservoirs as previous studies suggest. The problem with this EOR method is that these projects have high costs and raised environmental concerns. Ionic liquids (ILs) are introduced as an alternative material to surfactants, however, the cost of their synthesis and purification processes are high. Besides, some of them are toxic and have non-biodegradable properties which limit their commercial usage. Recently, a new form of ILs produced and called Deep Eutectic Solvents (DESs). The discovered material is more affordable and environmentally friendly and hence, it is considered to be an alternative material for existing conventional ILs. DESs are cheap, easy to produce, non-toxic, reusable, bio-degradable, and environmentally friendly. These materials consist of two or more cheap and safe components which will form a eutectic mixture. The melting point of the final mixture is lower than its components. In this study, the effectiveness of DESs in the EOR is analysed and evaluated to consider it as a new injection material for chemical EOR. This material has specific properties which improve the efficiency of EOR processes. Some of the favourable properties are stable emulsion between phases, interfacial tension (IFT) reduction, wettability change, recovery enhancement, and avoiding formation damage which is discussed and analysed in this paper. Moreover, the cost of the process is hugely reduced compared with other chemical injection methods. As the result, the main factor for the recovery enhancement is wettability alteration and the chance of viscosity. Besides, only malonic and acid-based DESs formed emulsions with oil, and the other types of DESs did not show emulsification properties. The IFT value increased for heavy oil reservoirs, while for reservoirs with light/medium oil IFT was reduced. Furthermore, DESs did not show formation damage which is a bonus point for this method. As the final result, Choline Chloride Glycerol showed the best recovery with an extra 30% to the original production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Utilization of Microfluidics Technology for an Efficient Polymer Screening Process in Enhanced Oil Recovery (EOR) Applications Decarbonization Will Not Come for Free: Asset-M Marginal Abatement Cost Curve Comparing WAG-CO2 Injection with Continuous Water and Gas Injection in Separate Wells for the Development and Management of a CO2-Rich Light Oil Fractured Carbonate Reservoir Subject to Full Gas Recycling ESG, Sustainability and Decarbonization: An Analysis of Strategies and Solutions for the Energy Industry Feasibility Evaluation of Warm Solvent Assisted Gravity Drainage Process in Low-Carbon Developing Super-Heavy Oil or Oil Sands Project
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1