{"title":"基于模糊c均值聚类的多尺度边缘检测","authors":"Y. Zhai, Xiaoming Liu","doi":"10.1109/ISSCAA.2006.1627581","DOIUrl":null,"url":null,"abstract":"This paper presents a novel method for edge detection based on multiscale wavelet features and fuzzy c-means clustering. Firstly, an effective feature extraction algorithm using multiscale wavelet transform was proposed to extract classification features, thus the feature vector for each pixel was gained, which contained the gradient information in various directions; and then, these vectors were used as inputs for the fuzzy c-means clustering algorithm, which resulted in an automatic classification. In this way, the edge map can be obtained adaptively. Some comparisons with traditional edge detection algorithms were given in this paper. Experimental results demonstrated that the proposed method had a more satisfying performance","PeriodicalId":275436,"journal":{"name":"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multiscale edge detection based on fuzzy c-means clustering\",\"authors\":\"Y. Zhai, Xiaoming Liu\",\"doi\":\"10.1109/ISSCAA.2006.1627581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel method for edge detection based on multiscale wavelet features and fuzzy c-means clustering. Firstly, an effective feature extraction algorithm using multiscale wavelet transform was proposed to extract classification features, thus the feature vector for each pixel was gained, which contained the gradient information in various directions; and then, these vectors were used as inputs for the fuzzy c-means clustering algorithm, which resulted in an automatic classification. In this way, the edge map can be obtained adaptively. Some comparisons with traditional edge detection algorithms were given in this paper. Experimental results demonstrated that the proposed method had a more satisfying performance\",\"PeriodicalId\":275436,\"journal\":{\"name\":\"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCAA.2006.1627581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st International Symposium on Systems and Control in Aerospace and Astronautics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCAA.2006.1627581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiscale edge detection based on fuzzy c-means clustering
This paper presents a novel method for edge detection based on multiscale wavelet features and fuzzy c-means clustering. Firstly, an effective feature extraction algorithm using multiscale wavelet transform was proposed to extract classification features, thus the feature vector for each pixel was gained, which contained the gradient information in various directions; and then, these vectors were used as inputs for the fuzzy c-means clustering algorithm, which resulted in an automatic classification. In this way, the edge map can be obtained adaptively. Some comparisons with traditional edge detection algorithms were given in this paper. Experimental results demonstrated that the proposed method had a more satisfying performance