内存数据库并发控制的优化事务性数据结构方法

Christina L. Peterson, Amalee Wilson, P. Pirkelbauer, D. Dechev
{"title":"内存数据库并发控制的优化事务性数据结构方法","authors":"Christina L. Peterson, Amalee Wilson, P. Pirkelbauer, D. Dechev","doi":"10.1109/SBAC-PAD49847.2020.00025","DOIUrl":null,"url":null,"abstract":"The optimistic concurrency control (OCC) utilized by in-memory databases performs writes on thread-local copies and makes the writes visible upon passing validation. However, high contention workloads suffer from failure of the validation step due to non-semantic memory access conflicts, leading to frequent transaction aborts. In this work, we improve the commit rate of in-memory databases by replacing OCC and the underlying indexing of key-value entries in the Silo database with a lock-free transactional dictionary. To further optimize the transactional commit rate, we present transactional merging, a technique that relaxes the semantic conflict resolution of transactional data structures by merging conflicting operations to reduce aborts. Transactional merging guarantees strict serializability through a strategy that recovers the correct abstract state given that a transaction attempting to merge operations aborts. The experimental evaluation demonstrates that the lock-free transactional dictionary with transactional merging achieves an average speedup of 175% over OCC and the Masstree indexing used in the Silo database for write-dominated workloads on a non-uniform memory access system.","PeriodicalId":202581,"journal":{"name":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimized Transactional Data Structure Approach to Concurrency Control for In-Memory Databases\",\"authors\":\"Christina L. Peterson, Amalee Wilson, P. Pirkelbauer, D. Dechev\",\"doi\":\"10.1109/SBAC-PAD49847.2020.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optimistic concurrency control (OCC) utilized by in-memory databases performs writes on thread-local copies and makes the writes visible upon passing validation. However, high contention workloads suffer from failure of the validation step due to non-semantic memory access conflicts, leading to frequent transaction aborts. In this work, we improve the commit rate of in-memory databases by replacing OCC and the underlying indexing of key-value entries in the Silo database with a lock-free transactional dictionary. To further optimize the transactional commit rate, we present transactional merging, a technique that relaxes the semantic conflict resolution of transactional data structures by merging conflicting operations to reduce aborts. Transactional merging guarantees strict serializability through a strategy that recovers the correct abstract state given that a transaction attempting to merge operations aborts. The experimental evaluation demonstrates that the lock-free transactional dictionary with transactional merging achieves an average speedup of 175% over OCC and the Masstree indexing used in the Silo database for write-dominated workloads on a non-uniform memory access system.\",\"PeriodicalId\":202581,\"journal\":{\"name\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SBAC-PAD49847.2020.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD49847.2020.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

内存数据库使用的乐观并发控制(OCC)对线程本地副本执行写操作,并在通过验证后使写操作可见。然而,由于非语义内存访问冲突,高争用工作负载会导致验证步骤失败,从而导致频繁的事务中止。在这项工作中,我们通过使用无锁事务字典替换OCC和Silo数据库中键值条目的底层索引来提高内存数据库的提交率。为了进一步优化事务提交率,我们提出了事务合并,这是一种通过合并冲突操作来减少事务数据结构的语义冲突解决的技术。事务合并通过一种策略保证严格的序列化性,该策略在尝试合并操作的事务终止时恢复正确的抽象状态。实验评估表明,在非统一内存访问系统上,对于写为主的工作负载,使用无锁事务合并的事务性字典比使用OCC和mastree索引的Silo数据库平均提速175%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimized Transactional Data Structure Approach to Concurrency Control for In-Memory Databases
The optimistic concurrency control (OCC) utilized by in-memory databases performs writes on thread-local copies and makes the writes visible upon passing validation. However, high contention workloads suffer from failure of the validation step due to non-semantic memory access conflicts, leading to frequent transaction aborts. In this work, we improve the commit rate of in-memory databases by replacing OCC and the underlying indexing of key-value entries in the Silo database with a lock-free transactional dictionary. To further optimize the transactional commit rate, we present transactional merging, a technique that relaxes the semantic conflict resolution of transactional data structures by merging conflicting operations to reduce aborts. Transactional merging guarantees strict serializability through a strategy that recovers the correct abstract state given that a transaction attempting to merge operations aborts. The experimental evaluation demonstrates that the lock-free transactional dictionary with transactional merging achieves an average speedup of 175% over OCC and the Masstree indexing used in the Silo database for write-dominated workloads on a non-uniform memory access system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analyzing the Loop Scheduling Mechanisms on Julia Multithreading Reliable and Energy-aware Mapping of Streaming Series-parallel Applications onto Hierarchical Platforms High-Performance Low-Memory Lowering: GEMM-based Algorithms for DNN Convolution Energy-Efficient Time Series Analysis Using Transprecision Computing On-chip Parallel Photonic Reservoir Computing using Multiple Delay Lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1