构造k近邻图的分布稀疏随机投影树

Isuru Ranawaka, Md. Khaledur Rahman, A. Azad
{"title":"构造k近邻图的分布稀疏随机投影树","authors":"Isuru Ranawaka, Md. Khaledur Rahman, A. Azad","doi":"10.1109/IPDPS54959.2023.00014","DOIUrl":null,"url":null,"abstract":"A random projection tree that partitions data points by projecting them onto random vectors is widely used for approximate nearest neighbor search in high-dimensional space. We consider a particular case of random projection trees for constructing a k-nearest neighbor graph (KNNG) from high-dimensional data. We develop a distributed-memory Random Projection Tree (DRPT) algorithm for constructing sparse random projection trees and then running a query on the forest to create the KNN graph. DRPT uses sparse matrix operations and a communication reduction scheme to scale KNN graph constructions to thousands of processes on a supercomputer. The accuracy of DRPT is comparable to state-of-the-art methods for approximate nearest neighbor search, while it runs two orders of magnitude faster than its peers. DRPT is available at https://github.com/HipGraph/DRPT.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Sparse Random Projection Trees for Constructing K-Nearest Neighbor Graphs\",\"authors\":\"Isuru Ranawaka, Md. Khaledur Rahman, A. Azad\",\"doi\":\"10.1109/IPDPS54959.2023.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A random projection tree that partitions data points by projecting them onto random vectors is widely used for approximate nearest neighbor search in high-dimensional space. We consider a particular case of random projection trees for constructing a k-nearest neighbor graph (KNNG) from high-dimensional data. We develop a distributed-memory Random Projection Tree (DRPT) algorithm for constructing sparse random projection trees and then running a query on the forest to create the KNN graph. DRPT uses sparse matrix operations and a communication reduction scheme to scale KNN graph constructions to thousands of processes on a supercomputer. The accuracy of DRPT is comparable to state-of-the-art methods for approximate nearest neighbor search, while it runs two orders of magnitude faster than its peers. DRPT is available at https://github.com/HipGraph/DRPT.\",\"PeriodicalId\":343684,\"journal\":{\"name\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS54959.2023.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机投影树通过将数据点投影到随机向量上来划分数据点,被广泛用于高维空间的近似最近邻搜索。我们考虑了一种特殊的从高维数据构造k近邻图(KNNG)的随机投影树。我们开发了一种分布式内存随机投影树(DRPT)算法,用于构造稀疏随机投影树,然后在森林上运行查询以创建KNN图。DRPT使用稀疏矩阵运算和通信约简方案将KNN图结构扩展到超级计算机上的数千个进程。DRPT的精度可与最先进的近似最近邻搜索方法相媲美,而其运行速度比同类方法快两个数量级。DRPT可在https://github.com/HipGraph/DRPT上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Sparse Random Projection Trees for Constructing K-Nearest Neighbor Graphs
A random projection tree that partitions data points by projecting them onto random vectors is widely used for approximate nearest neighbor search in high-dimensional space. We consider a particular case of random projection trees for constructing a k-nearest neighbor graph (KNNG) from high-dimensional data. We develop a distributed-memory Random Projection Tree (DRPT) algorithm for constructing sparse random projection trees and then running a query on the forest to create the KNN graph. DRPT uses sparse matrix operations and a communication reduction scheme to scale KNN graph constructions to thousands of processes on a supercomputer. The accuracy of DRPT is comparable to state-of-the-art methods for approximate nearest neighbor search, while it runs two orders of magnitude faster than its peers. DRPT is available at https://github.com/HipGraph/DRPT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-Accelerated Error-Bounded Compression Framework for Quantum Circuit Simulations Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs Smart Redbelly Blockchain: Reducing Congestion for Web3 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1