隧道环境中应急光探测的一种有效方法

Zhipeng Wang, M. Kagesawa, Shintaro Ono, A. Banno, K. Ikeuchi
{"title":"隧道环境中应急光探测的一种有效方法","authors":"Zhipeng Wang, M. Kagesawa, Shintaro Ono, A. Banno, K. Ikeuchi","doi":"10.1109/ACPR.2011.6166528","DOIUrl":null,"url":null,"abstract":"Automobile navigation in tunnel environment is challenging. GPS sensors and ordinary cameras can't function effectively. For navigation, infrared cameras are installed on top of our experimental vehicle, and here we propose an efficient object detection method to detect emergency lights from the collected data in tunnel environment. The proposed method firstly detects keypoints by setting thresholds for intensity of uniformly sampled points. Each keypoint is then verified by the appearance of its surrounding sub-image. After clustering the keypoints which satisfy the verification, the method verifies the keypoint clusters by their appearance and temporal information. Though the later steps are time-consuming, they deal with very few instances. And this improves the efficiency of the method, while not losing effectiveness of the appearance and temporal information. Thus the method gives promising results in real time. Detection performance and efficiency are verified by experiments carried on challenging real data.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Emergency light detection in tunnel environment: An efficient method\",\"authors\":\"Zhipeng Wang, M. Kagesawa, Shintaro Ono, A. Banno, K. Ikeuchi\",\"doi\":\"10.1109/ACPR.2011.6166528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automobile navigation in tunnel environment is challenging. GPS sensors and ordinary cameras can't function effectively. For navigation, infrared cameras are installed on top of our experimental vehicle, and here we propose an efficient object detection method to detect emergency lights from the collected data in tunnel environment. The proposed method firstly detects keypoints by setting thresholds for intensity of uniformly sampled points. Each keypoint is then verified by the appearance of its surrounding sub-image. After clustering the keypoints which satisfy the verification, the method verifies the keypoint clusters by their appearance and temporal information. Though the later steps are time-consuming, they deal with very few instances. And this improves the efficiency of the method, while not losing effectiveness of the appearance and temporal information. Thus the method gives promising results in real time. Detection performance and efficiency are verified by experiments carried on challenging real data.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

隧道环境下的汽车导航具有一定的挑战性。GPS传感器和普通摄像头无法有效发挥作用。在导航方面,我们的实验车辆顶部安装了红外摄像机,在这里我们提出了一种高效的目标检测方法,从采集的数据中检测隧道环境中的应急灯。该方法首先通过对均匀采样点的强度设置阈值来检测关键点。然后通过其周围子图像的外观来验证每个关键点。该方法将满足验证条件的关键点聚类后,根据关键点的外观和时间信息对关键点聚类进行验证。尽管后面的步骤很耗时,但它们处理的实例很少。在不损失外观信息和时间信息有效性的前提下,提高了方法的效率。因此,该方法的实时性较好。在具有挑战性的真实数据上进行了实验,验证了检测的性能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emergency light detection in tunnel environment: An efficient method
Automobile navigation in tunnel environment is challenging. GPS sensors and ordinary cameras can't function effectively. For navigation, infrared cameras are installed on top of our experimental vehicle, and here we propose an efficient object detection method to detect emergency lights from the collected data in tunnel environment. The proposed method firstly detects keypoints by setting thresholds for intensity of uniformly sampled points. Each keypoint is then verified by the appearance of its surrounding sub-image. After clustering the keypoints which satisfy the verification, the method verifies the keypoint clusters by their appearance and temporal information. Though the later steps are time-consuming, they deal with very few instances. And this improves the efficiency of the method, while not losing effectiveness of the appearance and temporal information. Thus the method gives promising results in real time. Detection performance and efficiency are verified by experiments carried on challenging real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1