利用可见性图求解时变信号的非负核图

Ecem Bozkurt, Antonio Ortega
{"title":"利用可见性图求解时变信号的非负核图","authors":"Ecem Bozkurt, Antonio Ortega","doi":"10.23919/eusipco55093.2022.9909594","DOIUrl":null,"url":null,"abstract":"We present a novel framework to represent sets of time-varying signals as dynamic graphs using the non-negative kernel (NNK) graph construction. We extend the original NNK framework to allow explicit delays as part of the graph construction, so that unlike in NNK, two nodes can be connected with an edge corresponding to a non-zero time delay, if there is higher similarity between the signals after shifting one of them. We also propose to characterize the similarity between signals at different nodes using the node degree and clustering coefficients of their respective visibility graphs. Graph edges that can representing temporal delays, we provide a new perspective that enables us to see the effect of synchronization in graph construction for time-series signals. For both temperature and EEG datasets, we show that our proposed approach can achieve sparse and interpretable graph representations. Furthermore, the proposed method can be useful in characterizing different EEG experiments using sparsity.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Negative Kernel Graphs for Time-Varying Signals Using Visibility Graphs\",\"authors\":\"Ecem Bozkurt, Antonio Ortega\",\"doi\":\"10.23919/eusipco55093.2022.9909594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel framework to represent sets of time-varying signals as dynamic graphs using the non-negative kernel (NNK) graph construction. We extend the original NNK framework to allow explicit delays as part of the graph construction, so that unlike in NNK, two nodes can be connected with an edge corresponding to a non-zero time delay, if there is higher similarity between the signals after shifting one of them. We also propose to characterize the similarity between signals at different nodes using the node degree and clustering coefficients of their respective visibility graphs. Graph edges that can representing temporal delays, we provide a new perspective that enables us to see the effect of synchronization in graph construction for time-series signals. For both temperature and EEG datasets, we show that our proposed approach can achieve sparse and interpretable graph representations. Furthermore, the proposed method can be useful in characterizing different EEG experiments using sparsity.\",\"PeriodicalId\":231263,\"journal\":{\"name\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/eusipco55093.2022.9909594\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909594","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新的框架,利用非负核(NNK)图构造将时变信号集表示为动态图。我们扩展了原始的NNK框架,允许显式延迟作为图构造的一部分,因此与NNK不同的是,如果两个节点在移动其中一个信号后具有更高的相似性,则两个节点可以通过对应于非零时间延迟的边连接。我们还提出了使用节点度和各自可见性图的聚类系数来表征不同节点信号之间的相似性。图边可以表示时间延迟,我们提供了一个新的视角,使我们能够看到同步在时间序列信号的图构建中的影响。对于温度和脑电图数据集,我们表明我们的方法可以实现稀疏和可解释的图表示。此外,该方法还可以利用稀疏度对不同的脑电信号实验进行表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Negative Kernel Graphs for Time-Varying Signals Using Visibility Graphs
We present a novel framework to represent sets of time-varying signals as dynamic graphs using the non-negative kernel (NNK) graph construction. We extend the original NNK framework to allow explicit delays as part of the graph construction, so that unlike in NNK, two nodes can be connected with an edge corresponding to a non-zero time delay, if there is higher similarity between the signals after shifting one of them. We also propose to characterize the similarity between signals at different nodes using the node degree and clustering coefficients of their respective visibility graphs. Graph edges that can representing temporal delays, we provide a new perspective that enables us to see the effect of synchronization in graph construction for time-series signals. For both temperature and EEG datasets, we show that our proposed approach can achieve sparse and interpretable graph representations. Furthermore, the proposed method can be useful in characterizing different EEG experiments using sparsity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1