基于模糊逻辑分类的电阻抗断层扫描在肺部图像重建中的应用

Cassandra Sze Jin Yong, Soon Yee Chong, Chelvam Dasaratha Raman, R. Chin, Sainarayanan Gopalakrishnan, K. Teo
{"title":"基于模糊逻辑分类的电阻抗断层扫描在肺部图像重建中的应用","authors":"Cassandra Sze Jin Yong, Soon Yee Chong, Chelvam Dasaratha Raman, R. Chin, Sainarayanan Gopalakrishnan, K. Teo","doi":"10.1109/IICAIET51634.2021.9573739","DOIUrl":null,"url":null,"abstract":"Electrical Impedance Tomography (EIT) estimates the electrical impedance distribution within a medium and produces cross-sectional images of an admittivity distribution inside an electrically conducting object. EIT in biomedicine application was first applied in lung due to it being large organs that allow large conductivity changes and is a promising technique since it allows continuous monitoring of the ventilation distribution. This study aims to explore the potential EIT technique in medical applications, with strategies to enhance the image reconstruction of the lung images. Performance of the enhanced image reconstruction is analyzed through simulation on the thorax Finite Element Model (FEM) based on a thorax CT image generated using NETGEN Mesher. To integrate and simulate EIT image of the thorax model, data are obtained from the forward and inverse model. Graz consensus Reconstruction algorithm for EIT (GREIT) technique is then applied as the consensus linear reconstruction algorithm for lung EIT images. Subsequently, the involvement of 3D imaging opens the opportunity to explore more electrode placement strategies for enhancement in image reconstruction. Performance of the reconstructed images based on electrode numbers and placement strategies are analyzed using the five figures of merits and classified into poor, average and good using Fuzzy Logic (FL). From the analysis, planar-offset configuration with 16-electrodes outperforms all others while planar configuration with 16-electrodes followed closely.","PeriodicalId":234229,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Impedance Tomography with Fuzzy Logic Classification in Lung Image Reconstruction\",\"authors\":\"Cassandra Sze Jin Yong, Soon Yee Chong, Chelvam Dasaratha Raman, R. Chin, Sainarayanan Gopalakrishnan, K. Teo\",\"doi\":\"10.1109/IICAIET51634.2021.9573739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electrical Impedance Tomography (EIT) estimates the electrical impedance distribution within a medium and produces cross-sectional images of an admittivity distribution inside an electrically conducting object. EIT in biomedicine application was first applied in lung due to it being large organs that allow large conductivity changes and is a promising technique since it allows continuous monitoring of the ventilation distribution. This study aims to explore the potential EIT technique in medical applications, with strategies to enhance the image reconstruction of the lung images. Performance of the enhanced image reconstruction is analyzed through simulation on the thorax Finite Element Model (FEM) based on a thorax CT image generated using NETGEN Mesher. To integrate and simulate EIT image of the thorax model, data are obtained from the forward and inverse model. Graz consensus Reconstruction algorithm for EIT (GREIT) technique is then applied as the consensus linear reconstruction algorithm for lung EIT images. Subsequently, the involvement of 3D imaging opens the opportunity to explore more electrode placement strategies for enhancement in image reconstruction. Performance of the reconstructed images based on electrode numbers and placement strategies are analyzed using the five figures of merits and classified into poor, average and good using Fuzzy Logic (FL). From the analysis, planar-offset configuration with 16-electrodes outperforms all others while planar configuration with 16-electrodes followed closely.\",\"PeriodicalId\":234229,\"journal\":{\"name\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICAIET51634.2021.9573739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICAIET51634.2021.9573739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电阻抗断层扫描(EIT)估计介质内的电阻抗分布,并产生导电物体内导纳分布的横截面图像。EIT在生物医学中的应用首先应用于肺,因为它是一个大的器官,允许大的电导率变化,是一个很有前途的技术,因为它可以连续监测通风分布。本研究旨在探讨EIT技术在医学上的潜在应用,并提出增强肺部图像重建的策略。基于NETGEN Mesher生成的胸腔CT图像,通过胸腔有限元模型(FEM)仿真分析了增强图像重建的性能。为了对胸腔模型的EIT图像进行整合和仿真,分别从正演模型和反演模型中获取数据。然后将Graz共识重建算法(GREIT)技术作为肺EIT图像的共识线性重建算法。随后,3D成像的参与为探索更多的电极放置策略以增强图像重建提供了机会。基于电极数量和放置策略对重构图像的性能进行了五位数优劣分析,并用模糊逻辑(FL)对重构图像进行了差、中、好的分类。从分析结果来看,16电极平面偏移结构的性能优于其他结构,16电极平面结构的性能紧随其后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electrical Impedance Tomography with Fuzzy Logic Classification in Lung Image Reconstruction
Electrical Impedance Tomography (EIT) estimates the electrical impedance distribution within a medium and produces cross-sectional images of an admittivity distribution inside an electrically conducting object. EIT in biomedicine application was first applied in lung due to it being large organs that allow large conductivity changes and is a promising technique since it allows continuous monitoring of the ventilation distribution. This study aims to explore the potential EIT technique in medical applications, with strategies to enhance the image reconstruction of the lung images. Performance of the enhanced image reconstruction is analyzed through simulation on the thorax Finite Element Model (FEM) based on a thorax CT image generated using NETGEN Mesher. To integrate and simulate EIT image of the thorax model, data are obtained from the forward and inverse model. Graz consensus Reconstruction algorithm for EIT (GREIT) technique is then applied as the consensus linear reconstruction algorithm for lung EIT images. Subsequently, the involvement of 3D imaging opens the opportunity to explore more electrode placement strategies for enhancement in image reconstruction. Performance of the reconstructed images based on electrode numbers and placement strategies are analyzed using the five figures of merits and classified into poor, average and good using Fuzzy Logic (FL). From the analysis, planar-offset configuration with 16-electrodes outperforms all others while planar configuration with 16-electrodes followed closely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text Analytics on Twitter Text-based Public Sentiment for Covid-19 Vaccine: A Machine Learning Approach Eye-Tank: Monitoring and Predicting Water and pH Level in Smart Farming Particle Swarm Optimization for Tuning Power System Stabilizer towards Transient Stability Improvement in Power System Network Multi-Scale Texture Analysis For Finger Vein Anti-Spoofing Utilization of Response Surface Methodology and Regression Model in Optimizing Bioretention Performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1