{"title":"分组密码操作模式的自动分析与综合","authors":"A. Malozemoff, Jonathan Katz, M. Green","doi":"10.1109/CSF.2014.18","DOIUrl":null,"url":null,"abstract":"Block ciphers such as AES are deterministic, keyed functions that operate on small, fixed-size blocks. Block-cipher modes of operation define a mechanism for probabilistic encryption of arbitrary length messages using any underlying block cipher. A mode of operation can be proven secure (say, against chosen-plaintext attacks) based on the assumption that the underlying block cipher is a pseudorandom function. Such proofs are complex and error-prone, however, and must be done from scratch whenever a new mode of operation is developed. We propose an automated approach for the security analysis of block-cipher modes of operation based on a \"local\" analysis of the steps carried out by the mode when handling a single message block. We model these steps as a directed, acyclic graph, with nodes corresponding to instructions and edges corresponding to intermediate values. We then introduce a set of labels and constraints on the edges, and prove a meta-theorem showing that any mode for which there exists a labeling of the edges satisfying these constraints is secure (against chosen-plaintext attacks). This allows us to reduce security of a given mode to a constraint-satisfaction problem, which in turn can be handled using an SMT solver. We couple our security-analysis tool with a routine that automatically generates viable modes, together, these allow us to synthesize hundreds of secure modes.","PeriodicalId":285965,"journal":{"name":"2014 IEEE 27th Computer Security Foundations Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Automated Analysis and Synthesis of Block-Cipher Modes of Operation\",\"authors\":\"A. Malozemoff, Jonathan Katz, M. Green\",\"doi\":\"10.1109/CSF.2014.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Block ciphers such as AES are deterministic, keyed functions that operate on small, fixed-size blocks. Block-cipher modes of operation define a mechanism for probabilistic encryption of arbitrary length messages using any underlying block cipher. A mode of operation can be proven secure (say, against chosen-plaintext attacks) based on the assumption that the underlying block cipher is a pseudorandom function. Such proofs are complex and error-prone, however, and must be done from scratch whenever a new mode of operation is developed. We propose an automated approach for the security analysis of block-cipher modes of operation based on a \\\"local\\\" analysis of the steps carried out by the mode when handling a single message block. We model these steps as a directed, acyclic graph, with nodes corresponding to instructions and edges corresponding to intermediate values. We then introduce a set of labels and constraints on the edges, and prove a meta-theorem showing that any mode for which there exists a labeling of the edges satisfying these constraints is secure (against chosen-plaintext attacks). This allows us to reduce security of a given mode to a constraint-satisfaction problem, which in turn can be handled using an SMT solver. We couple our security-analysis tool with a routine that automatically generates viable modes, together, these allow us to synthesize hundreds of secure modes.\",\"PeriodicalId\":285965,\"journal\":{\"name\":\"2014 IEEE 27th Computer Security Foundations Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 27th Computer Security Foundations Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF.2014.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 27th Computer Security Foundations Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF.2014.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated Analysis and Synthesis of Block-Cipher Modes of Operation
Block ciphers such as AES are deterministic, keyed functions that operate on small, fixed-size blocks. Block-cipher modes of operation define a mechanism for probabilistic encryption of arbitrary length messages using any underlying block cipher. A mode of operation can be proven secure (say, against chosen-plaintext attacks) based on the assumption that the underlying block cipher is a pseudorandom function. Such proofs are complex and error-prone, however, and must be done from scratch whenever a new mode of operation is developed. We propose an automated approach for the security analysis of block-cipher modes of operation based on a "local" analysis of the steps carried out by the mode when handling a single message block. We model these steps as a directed, acyclic graph, with nodes corresponding to instructions and edges corresponding to intermediate values. We then introduce a set of labels and constraints on the edges, and prove a meta-theorem showing that any mode for which there exists a labeling of the edges satisfying these constraints is secure (against chosen-plaintext attacks). This allows us to reduce security of a given mode to a constraint-satisfaction problem, which in turn can be handled using an SMT solver. We couple our security-analysis tool with a routine that automatically generates viable modes, together, these allow us to synthesize hundreds of secure modes.