纹理图像的知识引导分割

M. Simaan
{"title":"纹理图像的知识引导分割","authors":"M. Simaan","doi":"10.1109/ICSYSE.1990.203213","DOIUrl":null,"url":null,"abstract":"A two-level system for the segmentation of texture images into regions of common textural properties is described. The first level is a purely numeric texture analyzer that uses texture energy measures to transform the image into feature measure planes. The second level is a knowledge-based segmentor that uses rules derived from knowledge of the image-forming process to arrive at a segmentation. Two different control schemes that can be used to guide the segmentation process are described. These are based on parallel region growing and iterative quadtree splitting, respectively. An illustration of the performance of the system with both control schemes on a real test image is presented","PeriodicalId":259801,"journal":{"name":"1990 IEEE International Conference on Systems Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Knowledge-guided segmentation of texture images\",\"authors\":\"M. Simaan\",\"doi\":\"10.1109/ICSYSE.1990.203213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-level system for the segmentation of texture images into regions of common textural properties is described. The first level is a purely numeric texture analyzer that uses texture energy measures to transform the image into feature measure planes. The second level is a knowledge-based segmentor that uses rules derived from knowledge of the image-forming process to arrive at a segmentation. Two different control schemes that can be used to guide the segmentation process are described. These are based on parallel region growing and iterative quadtree splitting, respectively. An illustration of the performance of the system with both control schemes on a real test image is presented\",\"PeriodicalId\":259801,\"journal\":{\"name\":\"1990 IEEE International Conference on Systems Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1990 IEEE International Conference on Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSYSE.1990.203213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1990 IEEE International Conference on Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSYSE.1990.203213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

描述了一种用于将纹理图像分割成具有共同纹理属性的区域的两级系统。第一级是纯数值纹理分析器,使用纹理能量度量将图像转换为特征度量平面。第二层是基于知识的分割器,它使用从图像形成过程的知识中获得的规则来进行分割。描述了两种不同的控制方案,可用于指导分割过程。它们分别基于并行区域生长和迭代四叉树分裂。给出了两种控制方案在实际测试图像上的性能说明
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge-guided segmentation of texture images
A two-level system for the segmentation of texture images into regions of common textural properties is described. The first level is a purely numeric texture analyzer that uses texture energy measures to transform the image into feature measure planes. The second level is a knowledge-based segmentor that uses rules derived from knowledge of the image-forming process to arrive at a segmentation. Two different control schemes that can be used to guide the segmentation process are described. These are based on parallel region growing and iterative quadtree splitting, respectively. An illustration of the performance of the system with both control schemes on a real test image is presented
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust method of fault detection and diagnosis Optimal parameter identification for reduced-order discrete-time modeling of time-varying systems An experimental investigation and analysis of a brushless DC motor for diskette applications Rohrs examples and robustness of simple adaptive control Implementation of dynamic obstacle avoidance on the CMU NavLab
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1