最近的复制品可能比你想象的要远

Kirill Bogdanov, Miguel Peón Quirós, Gerald Q. Maguire, Dejan Kostic
{"title":"最近的复制品可能比你想象的要远","authors":"Kirill Bogdanov, Miguel Peón Quirós, Gerald Q. Maguire, Dejan Kostic","doi":"10.1145/2806777.2806939","DOIUrl":null,"url":null,"abstract":"Modern distributed systems are geo-distributed for reasons of increased performance, reliability, and survivability. At the heart of many such systems, e.g., the widely used Cassandra and MongoDB data stores, is an algorithm for choosing a closest set of replicas to service a client request. Suboptimal replica choices due to dynamically changing network conditions result in reduced performance as a result of increased response latency. We present GeoPerf, a tool that tries to automate the process of systematically testing the performance of replica selection algorithms for geo-distributed storage systems. Our key idea is to combine symbolic execution and lightweight modeling to generate a set of inputs that can expose weaknesses in replica selection. As part of our evaluation, we analyzed network round trip times between geographically distributed Amazon EC2 regions, and showed a significant number of daily changes in nearest-K replica orders. We tested Cassandra and MongoDB using our tool, and found bugs in each of these systems. Finally, we use our collected Amazon EC2 latency traces to quantify the time lost due to these bugs. For example due to the bug in Cassandra, the median wasted time for 10% of all requests is above 50 ms.","PeriodicalId":275158,"journal":{"name":"Proceedings of the Sixth ACM Symposium on Cloud Computing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"The nearest replica can be farther than you think\",\"authors\":\"Kirill Bogdanov, Miguel Peón Quirós, Gerald Q. Maguire, Dejan Kostic\",\"doi\":\"10.1145/2806777.2806939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern distributed systems are geo-distributed for reasons of increased performance, reliability, and survivability. At the heart of many such systems, e.g., the widely used Cassandra and MongoDB data stores, is an algorithm for choosing a closest set of replicas to service a client request. Suboptimal replica choices due to dynamically changing network conditions result in reduced performance as a result of increased response latency. We present GeoPerf, a tool that tries to automate the process of systematically testing the performance of replica selection algorithms for geo-distributed storage systems. Our key idea is to combine symbolic execution and lightweight modeling to generate a set of inputs that can expose weaknesses in replica selection. As part of our evaluation, we analyzed network round trip times between geographically distributed Amazon EC2 regions, and showed a significant number of daily changes in nearest-K replica orders. We tested Cassandra and MongoDB using our tool, and found bugs in each of these systems. Finally, we use our collected Amazon EC2 latency traces to quantify the time lost due to these bugs. For example due to the bug in Cassandra, the median wasted time for 10% of all requests is above 50 ms.\",\"PeriodicalId\":275158,\"journal\":{\"name\":\"Proceedings of the Sixth ACM Symposium on Cloud Computing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Sixth ACM Symposium on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2806777.2806939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixth ACM Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2806777.2806939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

现代分布式系统是地理分布式的,这是为了提高性能、可靠性和生存能力。在许多这样的系统的核心,例如,广泛使用的Cassandra和MongoDB数据存储,是一种算法,用于选择最接近的一组副本来服务客户端请求。由于动态变化的网络条件而导致的次优副本选择导致响应延迟增加,从而降低了性能。我们介绍了GeoPerf,这是一个工具,它试图自动化系统测试地理分布式存储系统的副本选择算法的性能。我们的关键思想是结合符号执行和轻量级建模来生成一组可以暴露副本选择中的弱点的输入。作为评估的一部分,我们分析了地理上分布的Amazon EC2区域之间的网络往返时间,并显示了最近k副本订单的大量每日变化。我们使用我们的工具测试了Cassandra和MongoDB,并在每个系统中发现了错误。最后,我们使用收集到的Amazon EC2延迟跟踪来量化由于这些错误而损失的时间。例如,由于Cassandra的bug, 10%的请求浪费的时间中值超过50毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The nearest replica can be farther than you think
Modern distributed systems are geo-distributed for reasons of increased performance, reliability, and survivability. At the heart of many such systems, e.g., the widely used Cassandra and MongoDB data stores, is an algorithm for choosing a closest set of replicas to service a client request. Suboptimal replica choices due to dynamically changing network conditions result in reduced performance as a result of increased response latency. We present GeoPerf, a tool that tries to automate the process of systematically testing the performance of replica selection algorithms for geo-distributed storage systems. Our key idea is to combine symbolic execution and lightweight modeling to generate a set of inputs that can expose weaknesses in replica selection. As part of our evaluation, we analyzed network round trip times between geographically distributed Amazon EC2 regions, and showed a significant number of daily changes in nearest-K replica orders. We tested Cassandra and MongoDB using our tool, and found bugs in each of these systems. Finally, we use our collected Amazon EC2 latency traces to quantify the time lost due to these bugs. For example due to the bug in Cassandra, the median wasted time for 10% of all requests is above 50 ms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Software-defined caching: managing caches in multi-tenant data centers Managed communication and consistency for fast data-parallel iterative analytics MemcachedGPU: scaling-up scale-out key-value stores Database high availability using SHADOW systems Proceedings of the Sixth ACM Symposium on Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1