{"title":"无线网络的效率:物理干扰模型的近似算法","authors":"Olga Goussevskaia, Y. Pignolet, Roger Wattenhofer","doi":"10.1561/1300000019","DOIUrl":null,"url":null,"abstract":"In this monograph we survey results from a newly emerging line of research that targets algorithm analysis in the physical interference model. In the main part of our monograph we focus on wireless scheduling: given a set of communication requests, arbitrarily distributed in space, how can these requests be scheduled efficiently? We study the difficulty of this problem and we examine algorithms for wireless scheduling with provable performance guarantees. Moreover, we present a few results for related problems and give additional context.","PeriodicalId":188056,"journal":{"name":"Found. Trends Netw.","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Efficiency of Wireless Networks: Approximation Algorithms for the Physical Interference Model\",\"authors\":\"Olga Goussevskaia, Y. Pignolet, Roger Wattenhofer\",\"doi\":\"10.1561/1300000019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this monograph we survey results from a newly emerging line of research that targets algorithm analysis in the physical interference model. In the main part of our monograph we focus on wireless scheduling: given a set of communication requests, arbitrarily distributed in space, how can these requests be scheduled efficiently? We study the difficulty of this problem and we examine algorithms for wireless scheduling with provable performance guarantees. Moreover, we present a few results for related problems and give additional context.\",\"PeriodicalId\":188056,\"journal\":{\"name\":\"Found. Trends Netw.\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Found. Trends Netw.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/1300000019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Netw.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/1300000019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficiency of Wireless Networks: Approximation Algorithms for the Physical Interference Model
In this monograph we survey results from a newly emerging line of research that targets algorithm analysis in the physical interference model. In the main part of our monograph we focus on wireless scheduling: given a set of communication requests, arbitrarily distributed in space, how can these requests be scheduled efficiently? We study the difficulty of this problem and we examine algorithms for wireless scheduling with provable performance guarantees. Moreover, we present a few results for related problems and give additional context.