{"title":"搜索系统中的知识语境:迈向信息素养行动","authors":"Catherine L. Smith, Soo Young Rieh","doi":"10.1145/3295750.3298940","DOIUrl":null,"url":null,"abstract":"In this perspectives paper we define knowledge-context as meta information that searchers use when making sense of information displayed in and accessible from a search engine results page (SERP). We argue that enriching the knowledge-context in SERPs has great potential for facilitating human learning, critical thinking, and creativity by expanding searchers' information-literate actions such as comparing, evaluating, and differentiating between information sources. Thus it supports the development of learning-centric search systems. Using theories and empirical findings from psychology and the learning sciences, we first discuss general effects of Web search on memory and learning. After reviewing selected research addressing metacognition and self-regulated learning, we discuss design goals for search systems that support metacognitive skills required for long-term learning, creativity, and critical thinking. We then propose that SERPs make both bibliographic and inferential knowledge-context readily accessible to motivate and facilitate information-literate actions for learning and creative endeavors. A brief discussion of related ideas, designs, and prototypes found in prior work follows. We conclude the paper by presenting future research directions and questions on knowledge-context, information-literate actions, and learning-centric search systems.","PeriodicalId":187771,"journal":{"name":"Proceedings of the 2019 Conference on Human Information Interaction and Retrieval","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Knowledge-Context in Search Systems: Toward Information-Literate Actions\",\"authors\":\"Catherine L. Smith, Soo Young Rieh\",\"doi\":\"10.1145/3295750.3298940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this perspectives paper we define knowledge-context as meta information that searchers use when making sense of information displayed in and accessible from a search engine results page (SERP). We argue that enriching the knowledge-context in SERPs has great potential for facilitating human learning, critical thinking, and creativity by expanding searchers' information-literate actions such as comparing, evaluating, and differentiating between information sources. Thus it supports the development of learning-centric search systems. Using theories and empirical findings from psychology and the learning sciences, we first discuss general effects of Web search on memory and learning. After reviewing selected research addressing metacognition and self-regulated learning, we discuss design goals for search systems that support metacognitive skills required for long-term learning, creativity, and critical thinking. We then propose that SERPs make both bibliographic and inferential knowledge-context readily accessible to motivate and facilitate information-literate actions for learning and creative endeavors. A brief discussion of related ideas, designs, and prototypes found in prior work follows. We conclude the paper by presenting future research directions and questions on knowledge-context, information-literate actions, and learning-centric search systems.\",\"PeriodicalId\":187771,\"journal\":{\"name\":\"Proceedings of the 2019 Conference on Human Information Interaction and Retrieval\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 Conference on Human Information Interaction and Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3295750.3298940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 Conference on Human Information Interaction and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3295750.3298940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Knowledge-Context in Search Systems: Toward Information-Literate Actions
In this perspectives paper we define knowledge-context as meta information that searchers use when making sense of information displayed in and accessible from a search engine results page (SERP). We argue that enriching the knowledge-context in SERPs has great potential for facilitating human learning, critical thinking, and creativity by expanding searchers' information-literate actions such as comparing, evaluating, and differentiating between information sources. Thus it supports the development of learning-centric search systems. Using theories and empirical findings from psychology and the learning sciences, we first discuss general effects of Web search on memory and learning. After reviewing selected research addressing metacognition and self-regulated learning, we discuss design goals for search systems that support metacognitive skills required for long-term learning, creativity, and critical thinking. We then propose that SERPs make both bibliographic and inferential knowledge-context readily accessible to motivate and facilitate information-literate actions for learning and creative endeavors. A brief discussion of related ideas, designs, and prototypes found in prior work follows. We conclude the paper by presenting future research directions and questions on knowledge-context, information-literate actions, and learning-centric search systems.