MDISN:从单个图像中学习多尺度变形隐式场

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2022-06-01 DOI:10.1016/j.visinf.2022.03.003
Yujie Wang , Yixin Zhuang , Yunzhe Liu , Baoquan Chen
{"title":"MDISN:从单个图像中学习多尺度变形隐式场","authors":"Yujie Wang ,&nbsp;Yixin Zhuang ,&nbsp;Yunzhe Liu ,&nbsp;Baoquan Chen","doi":"10.1016/j.visinf.2022.03.003","DOIUrl":null,"url":null,"abstract":"<div><p>We present a multiscale deformed implicit surface network (MDISN) to reconstruct 3D objects from single images by adapting the implicit surface of the target object from coarse to fine to the input image. The basic idea is to optimize the implicit surface according to the change of consecutive feature maps from the input image. And with multi-resolution feature maps, the implicit field is refined progressively, such that lower resolutions outline the main object components, and higher resolutions reveal fine-grained geometric details. To better explore the changes in feature maps, we devise a simple field deformation module that receives two consecutive feature maps to refine the implicit field with finer geometric details. Experimental results on both synthetic and real-world datasets demonstrate the superiority of the proposed method compared to state-of-the-art methods.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"6 2","pages":"Pages 41-49"},"PeriodicalIF":3.8000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X2200016X/pdfft?md5=7a2c3ab7456139b67e5be7c06fdac2f5&pid=1-s2.0-S2468502X2200016X-main.pdf","citationCount":"4","resultStr":"{\"title\":\"MDISN: Learning multiscale deformed implicit fields from single images\",\"authors\":\"Yujie Wang ,&nbsp;Yixin Zhuang ,&nbsp;Yunzhe Liu ,&nbsp;Baoquan Chen\",\"doi\":\"10.1016/j.visinf.2022.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a multiscale deformed implicit surface network (MDISN) to reconstruct 3D objects from single images by adapting the implicit surface of the target object from coarse to fine to the input image. The basic idea is to optimize the implicit surface according to the change of consecutive feature maps from the input image. And with multi-resolution feature maps, the implicit field is refined progressively, such that lower resolutions outline the main object components, and higher resolutions reveal fine-grained geometric details. To better explore the changes in feature maps, we devise a simple field deformation module that receives two consecutive feature maps to refine the implicit field with finer geometric details. Experimental results on both synthetic and real-world datasets demonstrate the superiority of the proposed method compared to state-of-the-art methods.</p></div>\",\"PeriodicalId\":36903,\"journal\":{\"name\":\"Visual Informatics\",\"volume\":\"6 2\",\"pages\":\"Pages 41-49\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468502X2200016X/pdfft?md5=7a2c3ab7456139b67e5be7c06fdac2f5&pid=1-s2.0-S2468502X2200016X-main.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Informatics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468502X2200016X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X2200016X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种多尺度变形隐式表面网络(MDISN),通过将目标物体的隐式表面从粗到细调整到输入图像,从单幅图像重建三维物体。其基本思想是根据输入图像连续特征映射的变化来优化隐式曲面。在多分辨率特征图中,隐式域被逐步细化,低分辨率的隐式域勾勒出目标的主要成分,高分辨率的隐式域显示出细粒度的几何细节。为了更好地探索特征图的变化,我们设计了一个简单的场变形模块,该模块接收两个连续的特征图,以更精细的几何细节来细化隐含的场。在合成和真实数据集上的实验结果表明,与最先进的方法相比,所提出的方法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MDISN: Learning multiscale deformed implicit fields from single images

We present a multiscale deformed implicit surface network (MDISN) to reconstruct 3D objects from single images by adapting the implicit surface of the target object from coarse to fine to the input image. The basic idea is to optimize the implicit surface according to the change of consecutive feature maps from the input image. And with multi-resolution feature maps, the implicit field is refined progressively, such that lower resolutions outline the main object components, and higher resolutions reveal fine-grained geometric details. To better explore the changes in feature maps, we devise a simple field deformation module that receives two consecutive feature maps to refine the implicit field with finer geometric details. Experimental results on both synthetic and real-world datasets demonstrate the superiority of the proposed method compared to state-of-the-art methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1