基于多元统计信号处理和结构化残差生成的化学气体传感器阵列中毒故障诊断

M. Padilla, A. Perera, I. Montoliu, A. Chaudry, K. Persaud, S. Marco
{"title":"基于多元统计信号处理和结构化残差生成的化学气体传感器阵列中毒故障诊断","authors":"M. Padilla, A. Perera, I. Montoliu, A. Chaudry, K. Persaud, S. Marco","doi":"10.1109/WISP.2007.4447638","DOIUrl":null,"url":null,"abstract":"Chemical gas sensors are a cheaper and faster alternative for gas analysis than conventional analytic instruments. .However they are prone to degradation because of sensor poisoning and drift. Statistical methods like principal component analysis (PCA) and partial least squares (PLS) have been proved to be very useful in the task of fault diagnosis of malfunctioning sensors. In this work we test the effectiveness of several techniques based on PCA and PLS on faults caused by sensor poisoning These techniques will be evaluated on a dataset composed by the signals of 17 conductive polymers gas sensors measuring three analytes at several concentration levels. These techniques will be evaluated concerning their capabilities to detect the fault, identify the faulty sensor and correct their signal.","PeriodicalId":164902,"journal":{"name":"2007 IEEE International Symposium on Intelligent Signal Processing","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Poisoning fault diagnosis in chemical gas sensor arrays using multivariate statistical signal processing and structured residuals generation\",\"authors\":\"M. Padilla, A. Perera, I. Montoliu, A. Chaudry, K. Persaud, S. Marco\",\"doi\":\"10.1109/WISP.2007.4447638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical gas sensors are a cheaper and faster alternative for gas analysis than conventional analytic instruments. .However they are prone to degradation because of sensor poisoning and drift. Statistical methods like principal component analysis (PCA) and partial least squares (PLS) have been proved to be very useful in the task of fault diagnosis of malfunctioning sensors. In this work we test the effectiveness of several techniques based on PCA and PLS on faults caused by sensor poisoning These techniques will be evaluated on a dataset composed by the signals of 17 conductive polymers gas sensors measuring three analytes at several concentration levels. These techniques will be evaluated concerning their capabilities to detect the fault, identify the faulty sensor and correct their signal.\",\"PeriodicalId\":164902,\"journal\":{\"name\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"volume\":\"123 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Intelligent Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISP.2007.4447638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Intelligent Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISP.2007.4447638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

化学气体传感器是一种比传统分析仪器更便宜、更快的气体分析替代方案,但由于传感器中毒和漂移,它们容易退化。统计方法如主成分分析(PCA)和偏最小二乘(PLS)已被证明在故障传感器的故障诊断任务中非常有用。在这项工作中,我们测试了几种基于PCA和PLS的技术在传感器中毒引起的故障上的有效性。这些技术将在由17个导电聚合物气体传感器的信号组成的数据集上进行评估,这些信号由测量几种浓度水平下的三种分析物组成。这些技术将根据其检测故障、识别故障传感器和纠正其信号的能力进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poisoning fault diagnosis in chemical gas sensor arrays using multivariate statistical signal processing and structured residuals generation
Chemical gas sensors are a cheaper and faster alternative for gas analysis than conventional analytic instruments. .However they are prone to degradation because of sensor poisoning and drift. Statistical methods like principal component analysis (PCA) and partial least squares (PLS) have been proved to be very useful in the task of fault diagnosis of malfunctioning sensors. In this work we test the effectiveness of several techniques based on PCA and PLS on faults caused by sensor poisoning These techniques will be evaluated on a dataset composed by the signals of 17 conductive polymers gas sensors measuring three analytes at several concentration levels. These techniques will be evaluated concerning their capabilities to detect the fault, identify the faulty sensor and correct their signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Developments in All-Optical Nonlinear Signal Processing for Fiber-Optic Communications Robust Ultrasonic Spread-Spectrum Positioning System using a AoA/ToA Method Distributed perception for a group of legged robots Advanced Multisensorial Barrier for Obstacle Detection Visual Model Feature Tracking For UAV Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1