基于径向基函数的图像配准

R. Rajeswari, A. Irudhayaraj
{"title":"基于径向基函数的图像配准","authors":"R. Rajeswari, A. Irudhayaraj","doi":"10.1109/ICMLC.2010.66","DOIUrl":null,"url":null,"abstract":"Radial basis function(RBF) is used to register source image with target image. Training the RBF network is done with inputs as X,Y co-ordinates of the characteristic points from source and target images. The target output in the output layer is taken as the amount and direction of horizontal shift, vertical shift, angle of rotation required to align source image with target image. This approach results in less alignment error.","PeriodicalId":423912,"journal":{"name":"2010 Second International Conference on Machine Learning and Computing","volume":"248 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image Registration Using Radial Basis Function\",\"authors\":\"R. Rajeswari, A. Irudhayaraj\",\"doi\":\"10.1109/ICMLC.2010.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radial basis function(RBF) is used to register source image with target image. Training the RBF network is done with inputs as X,Y co-ordinates of the characteristic points from source and target images. The target output in the output layer is taken as the amount and direction of horizontal shift, vertical shift, angle of rotation required to align source image with target image. This approach results in less alignment error.\",\"PeriodicalId\":423912,\"journal\":{\"name\":\"2010 Second International Conference on Machine Learning and Computing\",\"volume\":\"248 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Second International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2010.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用径向基函数(RBF)对源图像与目标图像进行配准。RBF网络的训练是通过输入源图像和目标图像的特征点的X、Y坐标来完成的。输出层中的目标输出作为源图像与目标图像对齐所需的水平位移、垂直位移、旋转角度的量和方向。这种方法可以减少校准误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Registration Using Radial Basis Function
Radial basis function(RBF) is used to register source image with target image. Training the RBF network is done with inputs as X,Y co-ordinates of the characteristic points from source and target images. The target output in the output layer is taken as the amount and direction of horizontal shift, vertical shift, angle of rotation required to align source image with target image. This approach results in less alignment error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modified Ant Miner for Intrusion Detection An Approach Based on Clustering Method for Object Finding Mobile Robots Using ACO Statistical Feature Extraction for Classification of Image Spam Using Artificial Neural Networks Recognition of Faces Using Improved Principal Component Analysis Autonomous Navigation in Rubber Plantations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1