基于边缘和区域信息的鱼眼图像有效区域分割算法

Tongxin Du, Bin Fang, Mingliang Zhou, Henjun Zhao, Weizhi Xian, X. Wu
{"title":"基于边缘和区域信息的鱼眼图像有效区域分割算法","authors":"Tongxin Du, Bin Fang, Mingliang Zhou, Henjun Zhao, Weizhi Xian, X. Wu","doi":"10.1109/ICIP40778.2020.9191294","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method to segment the valid region of fisheye images. First, we construct an objective function with three terms, which are the region driving term, the edge driving term and the length regularization term. Second, we minimize this objective function by a modified gradient descent method to find the best segmentation result. Our method can achieve valid region segmentation by making use of both region information and edge information. Experiments show that the proposed method can deal with blurred edges, halation noise and incomplete valid region problems.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Segmentation Algorithm of the Valid Region in Fisheye Images Using Edge and Region Information\",\"authors\":\"Tongxin Du, Bin Fang, Mingliang Zhou, Henjun Zhao, Weizhi Xian, X. Wu\",\"doi\":\"10.1109/ICIP40778.2020.9191294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a method to segment the valid region of fisheye images. First, we construct an objective function with three terms, which are the region driving term, the edge driving term and the length regularization term. Second, we minimize this objective function by a modified gradient descent method to find the best segmentation result. Our method can achieve valid region segmentation by making use of both region information and edge information. Experiments show that the proposed method can deal with blurred edges, halation noise and incomplete valid region problems.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种分割鱼眼图像有效区域的方法。首先,我们构造了一个包含三个项的目标函数,分别是区域驱动项、边缘驱动项和长度正则化项。其次,利用改进的梯度下降法最小化目标函数,得到最佳分割结果。该方法可以同时利用区域信息和边缘信息实现有效的区域分割。实验表明,该方法可以有效地处理边缘模糊、色散噪声和有效区域不完全等问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Segmentation Algorithm of the Valid Region in Fisheye Images Using Edge and Region Information
In this paper, we propose a method to segment the valid region of fisheye images. First, we construct an objective function with three terms, which are the region driving term, the edge driving term and the length regularization term. Second, we minimize this objective function by a modified gradient descent method to find the best segmentation result. Our method can achieve valid region segmentation by making use of both region information and edge information. Experiments show that the proposed method can deal with blurred edges, halation noise and incomplete valid region problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1