数据部分:一种在数据库中保护隐私的技术

A. Gupta, A. Sunsunwal, S. Singhal
{"title":"数据部分:一种在数据库中保护隐私的技术","authors":"A. Gupta, A. Sunsunwal, S. Singhal","doi":"10.1109/INMIC.2008.4777735","DOIUrl":null,"url":null,"abstract":"In order to protect individuals' privacy, the technique of k-anonymization has been proposed to de-associate sensitive attributes from the corresponding identifiers. Datafly is one such technique which generalizes the information up to a level in such a way that each individual is hidden among at least k-1 other individuals. But this technique sometimes over distorts the data which may render it useless for statistical and research purposes. In this paper, we present a method called ldquoData-Partrdquo, based on ldquoDataflyrdquo, but with certain modifications, which tries to minimize the distortion of data while still maintaining adequate privacy protection. We prove it through results and experiments at the end of this paper.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-part: A technique for privacy protection in databases\",\"authors\":\"A. Gupta, A. Sunsunwal, S. Singhal\",\"doi\":\"10.1109/INMIC.2008.4777735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to protect individuals' privacy, the technique of k-anonymization has been proposed to de-associate sensitive attributes from the corresponding identifiers. Datafly is one such technique which generalizes the information up to a level in such a way that each individual is hidden among at least k-1 other individuals. But this technique sometimes over distorts the data which may render it useless for statistical and research purposes. In this paper, we present a method called ldquoData-Partrdquo, based on ldquoDataflyrdquo, but with certain modifications, which tries to minimize the distortion of data while still maintaining adequate privacy protection. We prove it through results and experiments at the end of this paper.\",\"PeriodicalId\":112530,\"journal\":{\"name\":\"2008 IEEE International Multitopic Conference\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Multitopic Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INMIC.2008.4777735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了保护个人隐私,提出了k-匿名化技术,将敏感属性从对应的标识符中去关联。Datafly就是这样一种技术,它将信息一般化到一定程度,使每个个体都隐藏在至少k-1个其他个体中。但这种技术有时会过度扭曲数据,使其对统计和研究目的毫无用处。在本文中,我们提出了一种名为ldquoData-Partrdquo的方法,该方法基于ldquoDataflyrdquo,但进行了一定的修改,试图在保持足够隐私保护的同时最小化数据失真。本文最后通过结果和实验证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-part: A technique for privacy protection in databases
In order to protect individuals' privacy, the technique of k-anonymization has been proposed to de-associate sensitive attributes from the corresponding identifiers. Datafly is one such technique which generalizes the information up to a level in such a way that each individual is hidden among at least k-1 other individuals. But this technique sometimes over distorts the data which may render it useless for statistical and research purposes. In this paper, we present a method called ldquoData-Partrdquo, based on ldquoDataflyrdquo, but with certain modifications, which tries to minimize the distortion of data while still maintaining adequate privacy protection. We prove it through results and experiments at the end of this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of nano particles on semiconductor manufacturing Graphical modeling and optimization of air interface standards for Software Defined Radios Per Packet Authentication for IEEE 802.11 wireless LAN An intelligent agri-information dissemination framework: An e-Government Characterization of waveguide slots using full wave EM analysis software HFSS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1