{"title":"多能系统需求资源自调度的广义建模","authors":"Sheng Wang, Yi Ding, Changzheng Shao","doi":"10.1109/SmartGridComm.2018.8587525","DOIUrl":null,"url":null,"abstract":"Demand response (DR) is a framework that allows flexible load (FL) to self-schedule, including being curtailed or shifted to maintain system balance between energy supply and demand. With the integration of multi-energy system (MES) and development of information and communication technologies (ICTs), multi-energy infrastructures have expanded the ways FL participates in DR program. FL can shift to another energy carrier without noticeable delay. However, the chronological behavior and economic assessment for such DR methods have not been comprehensively discussed yet. This paper proposed a generalized self-scheduling model for demand side in MES. Firstly, the chronological response potentials for multi-energy FLs are explored. Moreover, the appliance-level economic loss of both load curtailment and shifting are calculated based on customer damage function. The optimization of self-scheduling is formulated as a mixed integer programing problem and solved by genetic algorithm. A test case based on energy hub is formed to illustrate the proposed modeling technique.","PeriodicalId":213523,"journal":{"name":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized Modeling of Self-scheduling Demand Resource in Multi-Energy System\",\"authors\":\"Sheng Wang, Yi Ding, Changzheng Shao\",\"doi\":\"10.1109/SmartGridComm.2018.8587525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Demand response (DR) is a framework that allows flexible load (FL) to self-schedule, including being curtailed or shifted to maintain system balance between energy supply and demand. With the integration of multi-energy system (MES) and development of information and communication technologies (ICTs), multi-energy infrastructures have expanded the ways FL participates in DR program. FL can shift to another energy carrier without noticeable delay. However, the chronological behavior and economic assessment for such DR methods have not been comprehensively discussed yet. This paper proposed a generalized self-scheduling model for demand side in MES. Firstly, the chronological response potentials for multi-energy FLs are explored. Moreover, the appliance-level economic loss of both load curtailment and shifting are calculated based on customer damage function. The optimization of self-scheduling is formulated as a mixed integer programing problem and solved by genetic algorithm. A test case based on energy hub is formed to illustrate the proposed modeling technique.\",\"PeriodicalId\":213523,\"journal\":{\"name\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartGridComm.2018.8587525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2018.8587525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Generalized Modeling of Self-scheduling Demand Resource in Multi-Energy System
Demand response (DR) is a framework that allows flexible load (FL) to self-schedule, including being curtailed or shifted to maintain system balance between energy supply and demand. With the integration of multi-energy system (MES) and development of information and communication technologies (ICTs), multi-energy infrastructures have expanded the ways FL participates in DR program. FL can shift to another energy carrier without noticeable delay. However, the chronological behavior and economic assessment for such DR methods have not been comprehensively discussed yet. This paper proposed a generalized self-scheduling model for demand side in MES. Firstly, the chronological response potentials for multi-energy FLs are explored. Moreover, the appliance-level economic loss of both load curtailment and shifting are calculated based on customer damage function. The optimization of self-scheduling is formulated as a mixed integer programing problem and solved by genetic algorithm. A test case based on energy hub is formed to illustrate the proposed modeling technique.