学习图像分类中显著特征的最优变换

J. Zhou, Zhouyu Fu, A. Robles-Kelly
{"title":"学习图像分类中显著特征的最优变换","authors":"J. Zhou, Zhouyu Fu, A. Robles-Kelly","doi":"10.1109/DICTA.2009.28","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of recovering an optimal salient image descriptor transformation for image classification. Our method involves two steps. Firstly, a binary salient map is generated to specify the regions of interest for subsequent image feature extraction. To this end, an optimal cut-off value is recovered by maximising Fisher’s linear discriminant separability measure so as to separate the salient regions from the background of the scene. Next, image descriptors are extracted in the foreground region in order to be optimally transformed. The descriptor optimisation problem is cast in a regularised risk minimisation setting, in which the aim of computation is to recover the optimal transformation up to a cost function. The cost function is convex and can be solved using quadratic programming. The results on unsegmented Oxford Flowers database show that the proposed method can achieve classification performance that are comparable to those provided by alternatives elsewhere in the literature which employ pre-segmented images.","PeriodicalId":277395,"journal":{"name":"2009 Digital Image Computing: Techniques and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning the Optimal Transformation of Salient Features for Image Classification\",\"authors\":\"J. Zhou, Zhouyu Fu, A. Robles-Kelly\",\"doi\":\"10.1109/DICTA.2009.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of recovering an optimal salient image descriptor transformation for image classification. Our method involves two steps. Firstly, a binary salient map is generated to specify the regions of interest for subsequent image feature extraction. To this end, an optimal cut-off value is recovered by maximising Fisher’s linear discriminant separability measure so as to separate the salient regions from the background of the scene. Next, image descriptors are extracted in the foreground region in order to be optimally transformed. The descriptor optimisation problem is cast in a regularised risk minimisation setting, in which the aim of computation is to recover the optimal transformation up to a cost function. The cost function is convex and can be solved using quadratic programming. The results on unsegmented Oxford Flowers database show that the proposed method can achieve classification performance that are comparable to those provided by alternatives elsewhere in the literature which employ pre-segmented images.\",\"PeriodicalId\":277395,\"journal\":{\"name\":\"2009 Digital Image Computing: Techniques and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Digital Image Computing: Techniques and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2009.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2009.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们解决了恢复图像分类的最优显著图像描述子变换的问题。我们的方法包括两个步骤。首先,生成二值显著图,指定感兴趣的区域,用于随后的图像特征提取。为此,通过最大化Fisher的线性判别可分离性度量来恢复最佳截止值,从而将突出区域从场景的背景中分离出来。接下来,在前景区域提取图像描述符,以便进行最优变换。描述符优化问题是在一个正则化的风险最小化设置中进行的,其中计算的目的是恢复到成本函数的最优转换。代价函数是凸的,可以用二次规划求解。在未分割的Oxford Flowers数据库上的结果表明,所提出的方法可以达到与文献中使用预分割图像的替代方法相当的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning the Optimal Transformation of Salient Features for Image Classification
In this paper, we address the problem of recovering an optimal salient image descriptor transformation for image classification. Our method involves two steps. Firstly, a binary salient map is generated to specify the regions of interest for subsequent image feature extraction. To this end, an optimal cut-off value is recovered by maximising Fisher’s linear discriminant separability measure so as to separate the salient regions from the background of the scene. Next, image descriptors are extracted in the foreground region in order to be optimally transformed. The descriptor optimisation problem is cast in a regularised risk minimisation setting, in which the aim of computation is to recover the optimal transformation up to a cost function. The cost function is convex and can be solved using quadratic programming. The results on unsegmented Oxford Flowers database show that the proposed method can achieve classification performance that are comparable to those provided by alternatives elsewhere in the literature which employ pre-segmented images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Video Surveillance: Legally Blind? Mixed Pixel Analysis for Flood Mapping Using Extended Support Vector Machine 3D Reconstruction of Patient Specific Bone Models from 2D Radiographs for Image Guided Orthopedic Surgery Improved Single Image Dehazing Using Geometry Crowd Counting Using Multiple Local Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1