{"title":"微操作的正交Gough-Stewart平台","authors":"F. Jafari, J. McInroy","doi":"10.1109/TRA.2003.814506","DOIUrl":null,"url":null,"abstract":"Development of methods to design optimal Gough-Stewart platform geometries capable of meeting desired specifications is of high interest. Computationally intensive methods have been used to treat this problem in various settings. This paper uses analytic methods to characterize all orthogonal Gough-Stewart platforms (OGSPs) and to study their properties over a small workspace. This characterization is used to design optimal OGSPs for precision applications that achieve a desired hyperellipsoid of velocities. Some examples demonstrating the versatility of this theory are discussed.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Orthogonal Gough-Stewart platforms for micromanipulation\",\"authors\":\"F. Jafari, J. McInroy\",\"doi\":\"10.1109/TRA.2003.814506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of methods to design optimal Gough-Stewart platform geometries capable of meeting desired specifications is of high interest. Computationally intensive methods have been used to treat this problem in various settings. This paper uses analytic methods to characterize all orthogonal Gough-Stewart platforms (OGSPs) and to study their properties over a small workspace. This characterization is used to design optimal OGSPs for precision applications that achieve a desired hyperellipsoid of velocities. Some examples demonstrating the versatility of this theory are discussed.\",\"PeriodicalId\":161449,\"journal\":{\"name\":\"IEEE Trans. Robotics Autom.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRA.2003.814506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRA.2003.814506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Orthogonal Gough-Stewart platforms for micromanipulation
Development of methods to design optimal Gough-Stewart platform geometries capable of meeting desired specifications is of high interest. Computationally intensive methods have been used to treat this problem in various settings. This paper uses analytic methods to characterize all orthogonal Gough-Stewart platforms (OGSPs) and to study their properties over a small workspace. This characterization is used to design optimal OGSPs for precision applications that achieve a desired hyperellipsoid of velocities. Some examples demonstrating the versatility of this theory are discussed.