单耳浊音分离的谱平滑原理建模

Wei Jiang, Wenju Liu, Pengfei Hu
{"title":"单耳浊音分离的谱平滑原理建模","authors":"Wei Jiang, Wenju Liu, Pengfei Hu","doi":"10.1109/ACPR.2011.6166549","DOIUrl":null,"url":null,"abstract":"The smoothness of spectral envelope is a commonly known attribute of clean speech. In this study, this principle is modeled through oscillation degree of each time-frequency (T-F) unit, and then incorporated into a computational auditory scene analysis (CASA) system for monaural voiced speech separation. Specifically, oscillation degrees of autocorrelation function (ODACF) and of envelope autocorrelation function (ODEACF) are extracted for each T-F unit, which are then utilized in T-F unit labeling. Experiment results indicate that target units and interference units are distinguished more effectively by incorporating the spectral smoothness principle than by using the harmonic principle alone, and obvious segregation improvements are obtained.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling spectral smoothness principle for monaural voiced speech separation\",\"authors\":\"Wei Jiang, Wenju Liu, Pengfei Hu\",\"doi\":\"10.1109/ACPR.2011.6166549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The smoothness of spectral envelope is a commonly known attribute of clean speech. In this study, this principle is modeled through oscillation degree of each time-frequency (T-F) unit, and then incorporated into a computational auditory scene analysis (CASA) system for monaural voiced speech separation. Specifically, oscillation degrees of autocorrelation function (ODACF) and of envelope autocorrelation function (ODEACF) are extracted for each T-F unit, which are then utilized in T-F unit labeling. Experiment results indicate that target units and interference units are distinguished more effectively by incorporating the spectral smoothness principle than by using the harmonic principle alone, and obvious segregation improvements are obtained.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

频谱包络的平滑度是清洁语音的一个普遍特征。在本研究中,该原理通过每个时频(T-F)单元的振荡程度来建模,然后将其纳入计算听觉场景分析(CASA)系统中,用于单耳浊音分离。具体而言,提取每个T-F单元的自相关函数(ODACF)和包络自相关函数(ODEACF)的振荡度,然后将其用于T-F单元标记。实验结果表明,结合谱平滑原理比单独使用谐波原理能更有效地区分目标单元和干扰单元,分离效果得到明显改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling spectral smoothness principle for monaural voiced speech separation
The smoothness of spectral envelope is a commonly known attribute of clean speech. In this study, this principle is modeled through oscillation degree of each time-frequency (T-F) unit, and then incorporated into a computational auditory scene analysis (CASA) system for monaural voiced speech separation. Specifically, oscillation degrees of autocorrelation function (ODACF) and of envelope autocorrelation function (ODEACF) are extracted for each T-F unit, which are then utilized in T-F unit labeling. Experiment results indicate that target units and interference units are distinguished more effectively by incorporating the spectral smoothness principle than by using the harmonic principle alone, and obvious segregation improvements are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1