Yasmin K. Abdelmagid, Renad T. Nawar, Mennatullah K. Rabie, Ahmed S. Tulan, Ahmed H. Hassan, Andoleet Saleh, H. Mostafa
{"title":"DW自旋电子忆阻器在2T1M神经形态突触中的性能研究","authors":"Yasmin K. Abdelmagid, Renad T. Nawar, Mennatullah K. Rabie, Ahmed S. Tulan, Ahmed H. Hassan, Andoleet Saleh, H. Mostafa","doi":"10.1109/NILES50944.2020.9257896","DOIUrl":null,"url":null,"abstract":"Memristor, the two-terminal memory-resistance device discovered by Chua in 1971, is a promising solution for future processing problems. Its CMOS integration compatibility and large resistance in small size, makes it very successful candidate for large-scale systems like Neural Networks. In last decade, memristors were used in many Neuromorphic Synapses for its advantage of combining processing (dot-product) and memory in same device. There are different materials that can be used to fabricate memristors. In this paper, a comparison between spintronic and TiO2-resistive memristor in two-transistors-one memristor synapse, is introduced. The work was done on Cadence Virtuoso with using Verilog-A for memristor modeling. The comparison reveals that the synaptic implementation with a spintronic memristor is more efficient when high speed is needed. However, the resistive memristor is more adequate due to its lower power dissipation.","PeriodicalId":253090,"journal":{"name":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of DW Spintronic Memristor performance in 2T1M Neuromorphic Synapse\",\"authors\":\"Yasmin K. Abdelmagid, Renad T. Nawar, Mennatullah K. Rabie, Ahmed S. Tulan, Ahmed H. Hassan, Andoleet Saleh, H. Mostafa\",\"doi\":\"10.1109/NILES50944.2020.9257896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memristor, the two-terminal memory-resistance device discovered by Chua in 1971, is a promising solution for future processing problems. Its CMOS integration compatibility and large resistance in small size, makes it very successful candidate for large-scale systems like Neural Networks. In last decade, memristors were used in many Neuromorphic Synapses for its advantage of combining processing (dot-product) and memory in same device. There are different materials that can be used to fabricate memristors. In this paper, a comparison between spintronic and TiO2-resistive memristor in two-transistors-one memristor synapse, is introduced. The work was done on Cadence Virtuoso with using Verilog-A for memristor modeling. The comparison reveals that the synaptic implementation with a spintronic memristor is more efficient when high speed is needed. However, the resistive memristor is more adequate due to its lower power dissipation.\",\"PeriodicalId\":253090,\"journal\":{\"name\":\"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NILES50944.2020.9257896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NILES50944.2020.9257896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of DW Spintronic Memristor performance in 2T1M Neuromorphic Synapse
Memristor, the two-terminal memory-resistance device discovered by Chua in 1971, is a promising solution for future processing problems. Its CMOS integration compatibility and large resistance in small size, makes it very successful candidate for large-scale systems like Neural Networks. In last decade, memristors were used in many Neuromorphic Synapses for its advantage of combining processing (dot-product) and memory in same device. There are different materials that can be used to fabricate memristors. In this paper, a comparison between spintronic and TiO2-resistive memristor in two-transistors-one memristor synapse, is introduced. The work was done on Cadence Virtuoso with using Verilog-A for memristor modeling. The comparison reveals that the synaptic implementation with a spintronic memristor is more efficient when high speed is needed. However, the resistive memristor is more adequate due to its lower power dissipation.