{"title":"超高压和特高压输电线路的避雷分析:地形地形的影响","authors":"José Cuarán, Francisco Roman, Marley Becerra","doi":"10.1109/ICLP.2016.7791371","DOIUrl":null,"url":null,"abstract":"In this paper, the Self-Consisting Leader Inception and Propagation Model-SLIM- is used to analyze the shielding performance of transmission lines, with special attention on the terrain topography effect. Transverse and Longitudinal terrain profiles are considered. It is found that a transmission line can be more vulnerable to be struck by lightning on any terrain that leads to increase the height of the conductors. In addition, the striking distance to the phase conductors strongly depends on the landform and the tower geometry, which suggests changes in the current lightning protection standards.","PeriodicalId":373744,"journal":{"name":"2016 33rd International Conference on Lightning Protection (ICLP)","volume":"43 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Lightning shielding analysis of EHV and UHV transmission lines: On the effect of terrain topography\",\"authors\":\"José Cuarán, Francisco Roman, Marley Becerra\",\"doi\":\"10.1109/ICLP.2016.7791371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the Self-Consisting Leader Inception and Propagation Model-SLIM- is used to analyze the shielding performance of transmission lines, with special attention on the terrain topography effect. Transverse and Longitudinal terrain profiles are considered. It is found that a transmission line can be more vulnerable to be struck by lightning on any terrain that leads to increase the height of the conductors. In addition, the striking distance to the phase conductors strongly depends on the landform and the tower geometry, which suggests changes in the current lightning protection standards.\",\"PeriodicalId\":373744,\"journal\":{\"name\":\"2016 33rd International Conference on Lightning Protection (ICLP)\",\"volume\":\"43 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 33rd International Conference on Lightning Protection (ICLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICLP.2016.7791371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 33rd International Conference on Lightning Protection (ICLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICLP.2016.7791371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Lightning shielding analysis of EHV and UHV transmission lines: On the effect of terrain topography
In this paper, the Self-Consisting Leader Inception and Propagation Model-SLIM- is used to analyze the shielding performance of transmission lines, with special attention on the terrain topography effect. Transverse and Longitudinal terrain profiles are considered. It is found that a transmission line can be more vulnerable to be struck by lightning on any terrain that leads to increase the height of the conductors. In addition, the striking distance to the phase conductors strongly depends on the landform and the tower geometry, which suggests changes in the current lightning protection standards.