在亮度梯度域中使用无运动配准融合的HDR去重影

Cheng-Yeh Liou, Cheng-Yen Chuang, Chia-Han Huang, Yi-Chang Lu
{"title":"在亮度梯度域中使用无运动配准融合的HDR去重影","authors":"Cheng-Yeh Liou, Cheng-Yen Chuang, Chia-Han Huang, Yi-Chang Lu","doi":"10.1109/VCIP49819.2020.9301844","DOIUrl":null,"url":null,"abstract":"For most of the existing high dynamic range (HDR) deghosting flows, they require a time-consuming motion registration step to generate ghost-free HDR results. Since the motion registration step usually becomes the bottleneck of the entire flow, in this paper, we propose a novel H DR deghosting flow which does not require any motion registration process. By taking channel properties into account, the luminance and chrominance channels are fused differently in the proposed flow. Our motion-registration-free fusion could generate high-quality HDR results swiftly even if the original Low Dynamic Range (LDR) images contain objects with large foreground motions.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HDR Deghosting Using Motion-Registration-Free Fusion in the Luminance Gradient Domain\",\"authors\":\"Cheng-Yeh Liou, Cheng-Yen Chuang, Chia-Han Huang, Yi-Chang Lu\",\"doi\":\"10.1109/VCIP49819.2020.9301844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For most of the existing high dynamic range (HDR) deghosting flows, they require a time-consuming motion registration step to generate ghost-free HDR results. Since the motion registration step usually becomes the bottleneck of the entire flow, in this paper, we propose a novel H DR deghosting flow which does not require any motion registration process. By taking channel properties into account, the luminance and chrominance channels are fused differently in the proposed flow. Our motion-registration-free fusion could generate high-quality HDR results swiftly even if the original Low Dynamic Range (LDR) images contain objects with large foreground motions.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于大多数现有的高动态范围(HDR)去鬼影流,它们需要一个耗时的运动配准步骤来生成无鬼影的HDR结果。由于运动配准步骤通常成为整个流的瓶颈,本文提出了一种新的不需要任何运动配准过程的hdr去重影流。通过考虑信道特性,在该流中对亮度和色度信道进行了不同的融合。即使原始的低动态范围(LDR)图像包含具有大前景运动的对象,我们的无运动配准融合也可以快速生成高质量的HDR结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HDR Deghosting Using Motion-Registration-Free Fusion in the Luminance Gradient Domain
For most of the existing high dynamic range (HDR) deghosting flows, they require a time-consuming motion registration step to generate ghost-free HDR results. Since the motion registration step usually becomes the bottleneck of the entire flow, in this paper, we propose a novel H DR deghosting flow which does not require any motion registration process. By taking channel properties into account, the luminance and chrominance channels are fused differently in the proposed flow. Our motion-registration-free fusion could generate high-quality HDR results swiftly even if the original Low Dynamic Range (LDR) images contain objects with large foreground motions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mixed Appearance-based and Coding Distortion-based CNN Fusion Approach for In-loop Filtering in Video Coding APL: Adaptive Preloading of Short Video with Lyapunov Optimization A Novel Visual Analysis Oriented Rate Control Scheme for HEVC A Theory of Occlusion for Improving Rendering Quality of Views A Progressive Fast CU Split Decision Scheme for AVS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1