Yi Lin, Jingchi Jiang, Dongxin Chen, Zhaoyang Ma, Yi Guan, Xiguang Liu, Haiyan You, Jing Yang, Xue Cheng
{"title":"基于先验知识提取和指导的人脸图像痤疮严重程度分级","authors":"Yi Lin, Jingchi Jiang, Dongxin Chen, Zhaoyang Ma, Yi Guan, Xiguang Liu, Haiyan You, Jing Yang, Xue Cheng","doi":"10.1109/BIBM55620.2022.9995101","DOIUrl":null,"url":null,"abstract":"Acne Vulgaris seriously affects people’s daily life. In this paper, we propose a face acne grading framework which is a new paradigm to solve the image classification problem where the number and type of small objects are the evidence. This framework includes two components: prior knowledge extraction and prior knowledge guided network. The prior knowledge extraction uses an excellent segmentation method to predict the lesion areas as prior knowledge. The prior knowledge guided network fuses the prior knowledge and its corresponding image to grade the severity. The experiment results demonstrate that our framework achieves the state-of-the-art and diagnosis level of dermatologists.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Acne Severity Grading on Face Images via Extraction and Guidance of Prior Knowledge\",\"authors\":\"Yi Lin, Jingchi Jiang, Dongxin Chen, Zhaoyang Ma, Yi Guan, Xiguang Liu, Haiyan You, Jing Yang, Xue Cheng\",\"doi\":\"10.1109/BIBM55620.2022.9995101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acne Vulgaris seriously affects people’s daily life. In this paper, we propose a face acne grading framework which is a new paradigm to solve the image classification problem where the number and type of small objects are the evidence. This framework includes two components: prior knowledge extraction and prior knowledge guided network. The prior knowledge extraction uses an excellent segmentation method to predict the lesion areas as prior knowledge. The prior knowledge guided network fuses the prior knowledge and its corresponding image to grade the severity. The experiment results demonstrate that our framework achieves the state-of-the-art and diagnosis level of dermatologists.\",\"PeriodicalId\":210337,\"journal\":{\"name\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM55620.2022.9995101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acne Severity Grading on Face Images via Extraction and Guidance of Prior Knowledge
Acne Vulgaris seriously affects people’s daily life. In this paper, we propose a face acne grading framework which is a new paradigm to solve the image classification problem where the number and type of small objects are the evidence. This framework includes two components: prior knowledge extraction and prior knowledge guided network. The prior knowledge extraction uses an excellent segmentation method to predict the lesion areas as prior knowledge. The prior knowledge guided network fuses the prior knowledge and its corresponding image to grade the severity. The experiment results demonstrate that our framework achieves the state-of-the-art and diagnosis level of dermatologists.