基于ICA/SVM的通风机振动信号特征提取与识别

Hongsheng Yin, Peixi Zhang, Jian-sheng Qian, Gang Hua
{"title":"基于ICA/SVM的通风机振动信号特征提取与识别","authors":"Hongsheng Yin, Peixi Zhang, Jian-sheng Qian, Gang Hua","doi":"10.1109/CISP.2009.5304348","DOIUrl":null,"url":null,"abstract":"Ventilator vibration signal is usually mixed with some signals and shows strong nonlinearity, nonstationarity and non- Gaussian. It presents a great challenge to feature extraction and recognition. We applied the independent component analysis (ICA) to ventilator vibration signal analysis, used FastICA algorithm to get a group of independent variables with the useful feature information, adopted residual self-information (RSI) to compress further for the group of independent variables, and chose the larger RSI to form the new estimating component. And then we used support vector machine (SVM) to find the ventilator healthy pattern and/or the ventilator fault pattern. The experiment result shows that by using the methods above the correct identification rate of ventilator healthy and fault state reaches 100%.","PeriodicalId":263281,"journal":{"name":"2009 2nd International Congress on Image and Signal Processing","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature Extraction and Recognition of Ventilator Vibration Signal Based on ICA/SVM\",\"authors\":\"Hongsheng Yin, Peixi Zhang, Jian-sheng Qian, Gang Hua\",\"doi\":\"10.1109/CISP.2009.5304348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ventilator vibration signal is usually mixed with some signals and shows strong nonlinearity, nonstationarity and non- Gaussian. It presents a great challenge to feature extraction and recognition. We applied the independent component analysis (ICA) to ventilator vibration signal analysis, used FastICA algorithm to get a group of independent variables with the useful feature information, adopted residual self-information (RSI) to compress further for the group of independent variables, and chose the larger RSI to form the new estimating component. And then we used support vector machine (SVM) to find the ventilator healthy pattern and/or the ventilator fault pattern. The experiment result shows that by using the methods above the correct identification rate of ventilator healthy and fault state reaches 100%.\",\"PeriodicalId\":263281,\"journal\":{\"name\":\"2009 2nd International Congress on Image and Signal Processing\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd International Congress on Image and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP.2009.5304348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Congress on Image and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2009.5304348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

通风机振动信号通常与某些信号混合,表现出较强的非线性、非平稳性和非高斯性。这对特征提取和识别提出了很大的挑战。将独立分量分析(ICA)应用到通风机振动信号分析中,利用FastICA算法得到一组具有有用特征信息的自变量,对自变量组采用残差自信息(RSI)进一步压缩,选择较大的RSI组成新的估计分量。然后利用支持向量机(SVM)找到呼吸机的健康模式和故障模式。实验结果表明,采用上述方法对通风机健康状态和故障状态的正确率达到100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Extraction and Recognition of Ventilator Vibration Signal Based on ICA/SVM
Ventilator vibration signal is usually mixed with some signals and shows strong nonlinearity, nonstationarity and non- Gaussian. It presents a great challenge to feature extraction and recognition. We applied the independent component analysis (ICA) to ventilator vibration signal analysis, used FastICA algorithm to get a group of independent variables with the useful feature information, adopted residual self-information (RSI) to compress further for the group of independent variables, and chose the larger RSI to form the new estimating component. And then we used support vector machine (SVM) to find the ventilator healthy pattern and/or the ventilator fault pattern. The experiment result shows that by using the methods above the correct identification rate of ventilator healthy and fault state reaches 100%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Algorithm about Subpixel Edge Detection Based on Zernike Moments and Three-Grayscale Pattern Audio Watermarking Algorithm Robust to TSM Based on Counter Propagation Neural Network Concentric Two-Portion Radial Polarized Beam with Phase Shift Application of Fractal Technique in Nonlinear Geophysical Signal Processing A New Method for Estimating the Number of Targets from Radar Returns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1