心脏磁共振图像分割的水平集自适应方法

S. Dakua, J. Sahambi
{"title":"心脏磁共振图像分割的水平集自适应方法","authors":"S. Dakua, J. Sahambi","doi":"10.1109/ICIINFS.2008.4798482","DOIUrl":null,"url":null,"abstract":"Heart failures are of increasing importance due to increasing life expectation. For clinical diagnosis parameters for the condition of hearts are needed and can be derived automatically by image processing. Accurate and fast image segmentation algorithms are of paramount importance for a wide range of medical imaging applications. Level set algorithms based on narrow band implementation have been among the most widely used segmentation algorithms. The narrow band level set method is a kind of technique that tracks the evolving interface. Its computation domain is set near the zero level set. In this work, we present an adaptive method to extract the left ventricle (LV) irrespective of the intensity variation in heart MR data using a narrow-band level set method. Instead of using the image directly, its scaled down versions are used removing the unnecessary redundancies and extra computations. Also, we suggest an automatic approach for gaussian parameter selection.","PeriodicalId":429889,"journal":{"name":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Level Set Method for Cardiac Magnetic Resonance Image Segmentation: An Adaptive Approach\",\"authors\":\"S. Dakua, J. Sahambi\",\"doi\":\"10.1109/ICIINFS.2008.4798482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart failures are of increasing importance due to increasing life expectation. For clinical diagnosis parameters for the condition of hearts are needed and can be derived automatically by image processing. Accurate and fast image segmentation algorithms are of paramount importance for a wide range of medical imaging applications. Level set algorithms based on narrow band implementation have been among the most widely used segmentation algorithms. The narrow band level set method is a kind of technique that tracks the evolving interface. Its computation domain is set near the zero level set. In this work, we present an adaptive method to extract the left ventricle (LV) irrespective of the intensity variation in heart MR data using a narrow-band level set method. Instead of using the image directly, its scaled down versions are used removing the unnecessary redundancies and extra computations. Also, we suggest an automatic approach for gaussian parameter selection.\",\"PeriodicalId\":429889,\"journal\":{\"name\":\"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIINFS.2008.4798482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Region 10 and the Third international Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIINFS.2008.4798482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

由于预期寿命的延长,心力衰竭的重要性日益增加。在临床诊断中,需要通过图像处理自动获取心脏状态参数。准确、快速的图像分割算法对于广泛的医学成像应用至关重要。基于窄带实现的水平集算法是应用最广泛的分割算法之一。窄带水平集方法是一种跟踪界面演化的技术。它的计算域被设置在零水平集附近。在这项工作中,我们提出了一种自适应方法,无论心脏MR数据的强度变化如何,都可以使用窄带水平集方法提取左心室(LV)。不是直接使用图像,而是使用其缩小的版本来消除不必要的冗余和额外的计算。此外,我们还提出了一种自动选择高斯参数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Level Set Method for Cardiac Magnetic Resonance Image Segmentation: An Adaptive Approach
Heart failures are of increasing importance due to increasing life expectation. For clinical diagnosis parameters for the condition of hearts are needed and can be derived automatically by image processing. Accurate and fast image segmentation algorithms are of paramount importance for a wide range of medical imaging applications. Level set algorithms based on narrow band implementation have been among the most widely used segmentation algorithms. The narrow band level set method is a kind of technique that tracks the evolving interface. Its computation domain is set near the zero level set. In this work, we present an adaptive method to extract the left ventricle (LV) irrespective of the intensity variation in heart MR data using a narrow-band level set method. Instead of using the image directly, its scaled down versions are used removing the unnecessary redundancies and extra computations. Also, we suggest an automatic approach for gaussian parameter selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mega Programmable Interactive Robotic Surface (AMPIRS) State Estimation using Shifted Legendre Polynomials Fault diagnosis of rolling element bearing using time-domain features and neural networks New Method of Image Compression Using Multiwavelets and Set Partitioning Algorithm A Bandwidth Aware Topology Generation Mechanism for Peer-to-Peer based Publish-Subscribe Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1