Boyan Zhao, Rui Hou, Jianbo Dong, Michael C. Huang, S. Mckee, Qianlong Zhang, Yueji Liu, Ye Li, Lixin Zhang, Dan Meng
{"title":"威尼斯","authors":"Boyan Zhao, Rui Hou, Jianbo Dong, Michael C. Huang, S. Mckee, Qianlong Zhang, Yueji Liu, Ye Li, Lixin Zhang, Dan Meng","doi":"10.1145/3310360","DOIUrl":null,"url":null,"abstract":"Consolidated server racks are quickly becoming the standard infrastructure for engineering, business, medicine, and science. Such servers are still designed much in the way when they were organized as individual, distributed systems. Given that many fields rely on big-data analytics substantially, its cost-effectiveness and performance should be improved, which can be achieved by flexibly allowing resources to be shared across nodes. Here we describe Venice, a family of data-center server architectures that includes a strong communication substrate as a first-class resource. Venice supports a diverse set of resource-joining mechanisms that enables applications to leverage non-local resources efficiently. We have constructed a hardware prototype to better understand the implications of design decisions about system support for resource sharing. We use it to measure the performance of at-scale applications and to explore performance, power, and resource-sharing transparency tradeoffs (i.e., how many programming changes are needed). We analyze these tradeoffs for sharing memory, accelerators, and NICs. We find that reducing/hiding latency is particularly important, the chosen communication channels should match the sharing access patterns of the applications, and of which we can improve performance by exploiting inter-channel collaboration.","PeriodicalId":318554,"journal":{"name":"ACM Transactions on Computer Systems (TOCS)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Venice\",\"authors\":\"Boyan Zhao, Rui Hou, Jianbo Dong, Michael C. Huang, S. Mckee, Qianlong Zhang, Yueji Liu, Ye Li, Lixin Zhang, Dan Meng\",\"doi\":\"10.1145/3310360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consolidated server racks are quickly becoming the standard infrastructure for engineering, business, medicine, and science. Such servers are still designed much in the way when they were organized as individual, distributed systems. Given that many fields rely on big-data analytics substantially, its cost-effectiveness and performance should be improved, which can be achieved by flexibly allowing resources to be shared across nodes. Here we describe Venice, a family of data-center server architectures that includes a strong communication substrate as a first-class resource. Venice supports a diverse set of resource-joining mechanisms that enables applications to leverage non-local resources efficiently. We have constructed a hardware prototype to better understand the implications of design decisions about system support for resource sharing. We use it to measure the performance of at-scale applications and to explore performance, power, and resource-sharing transparency tradeoffs (i.e., how many programming changes are needed). We analyze these tradeoffs for sharing memory, accelerators, and NICs. We find that reducing/hiding latency is particularly important, the chosen communication channels should match the sharing access patterns of the applications, and of which we can improve performance by exploiting inter-channel collaboration.\",\"PeriodicalId\":318554,\"journal\":{\"name\":\"ACM Transactions on Computer Systems (TOCS)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems (TOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Consolidated server racks are quickly becoming the standard infrastructure for engineering, business, medicine, and science. Such servers are still designed much in the way when they were organized as individual, distributed systems. Given that many fields rely on big-data analytics substantially, its cost-effectiveness and performance should be improved, which can be achieved by flexibly allowing resources to be shared across nodes. Here we describe Venice, a family of data-center server architectures that includes a strong communication substrate as a first-class resource. Venice supports a diverse set of resource-joining mechanisms that enables applications to leverage non-local resources efficiently. We have constructed a hardware prototype to better understand the implications of design decisions about system support for resource sharing. We use it to measure the performance of at-scale applications and to explore performance, power, and resource-sharing transparency tradeoffs (i.e., how many programming changes are needed). We analyze these tradeoffs for sharing memory, accelerators, and NICs. We find that reducing/hiding latency is particularly important, the chosen communication channels should match the sharing access patterns of the applications, and of which we can improve performance by exploiting inter-channel collaboration.