威尼斯

Boyan Zhao, Rui Hou, Jianbo Dong, Michael C. Huang, S. Mckee, Qianlong Zhang, Yueji Liu, Ye Li, Lixin Zhang, Dan Meng
{"title":"威尼斯","authors":"Boyan Zhao, Rui Hou, Jianbo Dong, Michael C. Huang, S. Mckee, Qianlong Zhang, Yueji Liu, Ye Li, Lixin Zhang, Dan Meng","doi":"10.1145/3310360","DOIUrl":null,"url":null,"abstract":"Consolidated server racks are quickly becoming the standard infrastructure for engineering, business, medicine, and science. Such servers are still designed much in the way when they were organized as individual, distributed systems. Given that many fields rely on big-data analytics substantially, its cost-effectiveness and performance should be improved, which can be achieved by flexibly allowing resources to be shared across nodes. Here we describe Venice, a family of data-center server architectures that includes a strong communication substrate as a first-class resource. Venice supports a diverse set of resource-joining mechanisms that enables applications to leverage non-local resources efficiently. We have constructed a hardware prototype to better understand the implications of design decisions about system support for resource sharing. We use it to measure the performance of at-scale applications and to explore performance, power, and resource-sharing transparency tradeoffs (i.e., how many programming changes are needed). We analyze these tradeoffs for sharing memory, accelerators, and NICs. We find that reducing/hiding latency is particularly important, the chosen communication channels should match the sharing access patterns of the applications, and of which we can improve performance by exploiting inter-channel collaboration.","PeriodicalId":318554,"journal":{"name":"ACM Transactions on Computer Systems (TOCS)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Venice\",\"authors\":\"Boyan Zhao, Rui Hou, Jianbo Dong, Michael C. Huang, S. Mckee, Qianlong Zhang, Yueji Liu, Ye Li, Lixin Zhang, Dan Meng\",\"doi\":\"10.1145/3310360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consolidated server racks are quickly becoming the standard infrastructure for engineering, business, medicine, and science. Such servers are still designed much in the way when they were organized as individual, distributed systems. Given that many fields rely on big-data analytics substantially, its cost-effectiveness and performance should be improved, which can be achieved by flexibly allowing resources to be shared across nodes. Here we describe Venice, a family of data-center server architectures that includes a strong communication substrate as a first-class resource. Venice supports a diverse set of resource-joining mechanisms that enables applications to leverage non-local resources efficiently. We have constructed a hardware prototype to better understand the implications of design decisions about system support for resource sharing. We use it to measure the performance of at-scale applications and to explore performance, power, and resource-sharing transparency tradeoffs (i.e., how many programming changes are needed). We analyze these tradeoffs for sharing memory, accelerators, and NICs. We find that reducing/hiding latency is particularly important, the chosen communication channels should match the sharing access patterns of the applications, and of which we can improve performance by exploiting inter-channel collaboration.\",\"PeriodicalId\":318554,\"journal\":{\"name\":\"ACM Transactions on Computer Systems (TOCS)\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems (TOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

整合服务器机架正迅速成为工程、商业、医学和科学领域的标准基础设施。这类服务器的设计在很大程度上仍然沿用了它们作为独立的分布式系统组织时的方式。考虑到许多领域在很大程度上依赖于大数据分析,它的成本效益和性能应该得到提高,这可以通过灵活地允许跨节点共享资源来实现。在这里,我们描述了威尼斯,这是一系列数据中心服务器架构,其中包括一个强大的通信基板作为一级资源。威尼斯支持多种资源连接机制,使应用程序能够有效地利用非本地资源。我们已经构建了一个硬件原型,以便更好地理解有关系统支持资源共享的设计决策的含义。我们使用它来衡量大规模应用程序的性能,并探索性能、功率和资源共享透明度的权衡(即,需要多少编程更改)。我们分析了共享内存、加速器和nic的这些权衡。我们发现减少/隐藏延迟是特别重要的,所选择的通信通道应该匹配应用程序的共享访问模式,并且我们可以通过利用通道间协作来提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Venice
Consolidated server racks are quickly becoming the standard infrastructure for engineering, business, medicine, and science. Such servers are still designed much in the way when they were organized as individual, distributed systems. Given that many fields rely on big-data analytics substantially, its cost-effectiveness and performance should be improved, which can be achieved by flexibly allowing resources to be shared across nodes. Here we describe Venice, a family of data-center server architectures that includes a strong communication substrate as a first-class resource. Venice supports a diverse set of resource-joining mechanisms that enables applications to leverage non-local resources efficiently. We have constructed a hardware prototype to better understand the implications of design decisions about system support for resource sharing. We use it to measure the performance of at-scale applications and to explore performance, power, and resource-sharing transparency tradeoffs (i.e., how many programming changes are needed). We analyze these tradeoffs for sharing memory, accelerators, and NICs. We find that reducing/hiding latency is particularly important, the chosen communication channels should match the sharing access patterns of the applications, and of which we can improve performance by exploiting inter-channel collaboration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting Inter-process Communication with Architectural Support H-Container: Enabling Heterogeneous-ISA Container Migration in Edge Computing ROME: All Overlays Lead to Aggregation, but Some Are Faster than Others The Role of Compute in Autonomous Micro Aerial Vehicles: Optimizing for Mission Time and Energy Efficiency An OpenMP Runtime for Transparent Work Sharing across Cache-Incoherent Heterogeneous Nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1