Adaugo Q. Ohandjo, C. Dill, C. Dongquan, J. Lillard
{"title":"B56: CXCR5-CXCL13信号在前列腺癌病因差异中的调控","authors":"Adaugo Q. Ohandjo, C. Dill, C. Dongquan, J. Lillard","doi":"10.1158/1538-7755.DISP17-B56","DOIUrl":null,"url":null,"abstract":"The prevalence of prostate cancer (PCa) has been a worldwide burden. Cancer of the prostate is the most prevalent form of cancer in men and the second leading cause of death due to cancer in men in the United States and Europe. There is a major health disparity associated with PCa; the number of fatalities associated with this disease is more significant in African-American (AA) men than in European American (EA) men. Disease progression occurs despite hormone ablation therapy, which leads to a condition called castration-resistant prostate cancer (CRPC). Further complicating the matter, CRPC is a disease that affects a variety of patients differently, which can be problematic for physicians to provide standardized treatments with similar outcomes. AAs with CRPC can experience significantly lower rates of overall survival, faster rates of tumor progression, and poor responses to chemotherapy compared to EAs with this disease. We previously showed that CXCL13:CXCR5 axis plays a role in PCa pathobiology and is also associated with PCa aggressiveness; CXCR5 signaling mediates PCa cell growth, migration, invasion, and docetaxel resistance. To further understand the implication of CXCR5-CXCL13 in CRPC, we characterize the reason behind the health disparities seen across groups of PCa patients by evaluating the difference in regulatory molecules (miRNAs) on CXCL13-CXCR5 signaling. We found the expression profile of CXCL13 and CXCR5 RNA to be associated with miRNAs (miR-140-3p.1, miR-24-3p, miR-200c, miR-221-3p/22-3p, miR-192-5p/215-5p, miR-214-5p). Using RNA-seq datasets from the Gene Expression Omnibus (GEO) and the Sequence Read Archive (SRA), CXCL13 and CXCR5 RNA as well as associated miRNAs (miR-140-3p.1, miR-24-3p, miR-221-3p/22-3p, miR-192-5p/215-5p, and miR-214-5p) were defined by etiologic disparities among PCa patients; this correlation is different among AA men compared to EA men. Understanding PCa and specifically CRPC disparities requires a better understanding of the race-specific differences in prostate tumor biology, molecules leading to prostate inflammation, and the mechanisms associated with CRPC therapeutic resistance and its aggressive phenotype. Citation Format: Adaugo Queen Ohandjo, Courtney Dill, Chen Dongquan, James W. Lillard, Jr.. Regulation of CXCR5-CXCL13 signaling in prostate cancer etiologic disparities [abstract]. In: Proceedings of the Tenth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2017 Sep 25-28; Atlanta, GA. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2018;27(7 Suppl):Abstract nr B56.","PeriodicalId":146931,"journal":{"name":"Cell, Molecular, and Tumor Biology","volume":"101 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abstract B56: Regulation of CXCR5-CXCL13 signaling in prostate cancer etiologic disparities\",\"authors\":\"Adaugo Q. Ohandjo, C. Dill, C. Dongquan, J. Lillard\",\"doi\":\"10.1158/1538-7755.DISP17-B56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prevalence of prostate cancer (PCa) has been a worldwide burden. Cancer of the prostate is the most prevalent form of cancer in men and the second leading cause of death due to cancer in men in the United States and Europe. There is a major health disparity associated with PCa; the number of fatalities associated with this disease is more significant in African-American (AA) men than in European American (EA) men. Disease progression occurs despite hormone ablation therapy, which leads to a condition called castration-resistant prostate cancer (CRPC). Further complicating the matter, CRPC is a disease that affects a variety of patients differently, which can be problematic for physicians to provide standardized treatments with similar outcomes. AAs with CRPC can experience significantly lower rates of overall survival, faster rates of tumor progression, and poor responses to chemotherapy compared to EAs with this disease. We previously showed that CXCL13:CXCR5 axis plays a role in PCa pathobiology and is also associated with PCa aggressiveness; CXCR5 signaling mediates PCa cell growth, migration, invasion, and docetaxel resistance. To further understand the implication of CXCR5-CXCL13 in CRPC, we characterize the reason behind the health disparities seen across groups of PCa patients by evaluating the difference in regulatory molecules (miRNAs) on CXCL13-CXCR5 signaling. We found the expression profile of CXCL13 and CXCR5 RNA to be associated with miRNAs (miR-140-3p.1, miR-24-3p, miR-200c, miR-221-3p/22-3p, miR-192-5p/215-5p, miR-214-5p). Using RNA-seq datasets from the Gene Expression Omnibus (GEO) and the Sequence Read Archive (SRA), CXCL13 and CXCR5 RNA as well as associated miRNAs (miR-140-3p.1, miR-24-3p, miR-221-3p/22-3p, miR-192-5p/215-5p, and miR-214-5p) were defined by etiologic disparities among PCa patients; this correlation is different among AA men compared to EA men. Understanding PCa and specifically CRPC disparities requires a better understanding of the race-specific differences in prostate tumor biology, molecules leading to prostate inflammation, and the mechanisms associated with CRPC therapeutic resistance and its aggressive phenotype. Citation Format: Adaugo Queen Ohandjo, Courtney Dill, Chen Dongquan, James W. Lillard, Jr.. Regulation of CXCR5-CXCL13 signaling in prostate cancer etiologic disparities [abstract]. In: Proceedings of the Tenth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2017 Sep 25-28; Atlanta, GA. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2018;27(7 Suppl):Abstract nr B56.\",\"PeriodicalId\":146931,\"journal\":{\"name\":\"Cell, Molecular, and Tumor Biology\",\"volume\":\"101 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell, Molecular, and Tumor Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1158/1538-7755.DISP17-B56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell, Molecular, and Tumor Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1158/1538-7755.DISP17-B56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
前列腺癌(PCa)的患病率一直是一个世界性的负担。前列腺癌是男性中最常见的癌症,也是美国和欧洲男性因癌症死亡的第二大原因。与前列腺癌相关的主要健康差异;与此疾病相关的死亡人数在非洲裔美国人(AA)中比在欧洲裔美国人(EA)中更显著。尽管激素消融治疗,疾病仍会进展,导致一种称为去势抵抗性前列腺癌(CRPC)的疾病。更复杂的是,CRPC是一种影响不同患者的疾病,这对于医生提供具有相似结果的标准化治疗可能是一个问题。与患有这种疾病的ea相比,患有CRPC的AAs的总生存率明显较低,肿瘤进展速度更快,对化疗的反应较差。我们之前的研究表明,CXCL13:CXCR5轴在前列腺癌的病理生物学中发挥作用,也与前列腺癌的侵袭性有关;CXCR5信号通路介导PCa细胞生长、迁移、侵袭和多西他赛耐药。为了进一步了解CXCR5-CXCL13在CRPC中的意义,我们通过评估CXCL13-CXCR5信号调控分子(mirna)的差异,描述了不同PCa患者健康差异背后的原因。我们发现CXCL13和CXCR5 RNA的表达谱与mirna (miR-140-3p)相关。1、miR-24-3p、miR-200c、miR-221-3p/22-3p、miR-192-5p/215-5p、miR-214-5p)。使用来自基因表达综合(GEO)和序列读取档案(SRA)的RNA-seq数据集,CXCL13和CXCR5 RNA以及相关的miRNAs (miR-140-3p)。1、通过前列腺癌患者的病因差异来定义miR-24-3p、miR-221-3p/22-3p、miR-192-5p/215-5p和miR-214-5p;与EA男性相比,AA男性的这种相关性有所不同。了解前列腺癌和特异性CRPC差异,需要更好地了解前列腺肿瘤生物学、导致前列腺炎症的分子以及CRPC治疗耐药及其侵袭性表型的相关机制。引文格式:Adaugo Queen Ohandjo, Courtney Dill,陈东泉,James W. Lillard, Jr..CXCR5-CXCL13信号在前列腺癌病因差异中的调控[摘要]。见:第十届AACR会议论文集:种族/少数民族和医疗服务不足人群的癌症健康差异科学;2017年9月25-28日;亚特兰大,乔治亚州。费城(PA): AACR;癌症流行病学杂志,2018;27(7增刊):摘要nr B56。
Abstract B56: Regulation of CXCR5-CXCL13 signaling in prostate cancer etiologic disparities
The prevalence of prostate cancer (PCa) has been a worldwide burden. Cancer of the prostate is the most prevalent form of cancer in men and the second leading cause of death due to cancer in men in the United States and Europe. There is a major health disparity associated with PCa; the number of fatalities associated with this disease is more significant in African-American (AA) men than in European American (EA) men. Disease progression occurs despite hormone ablation therapy, which leads to a condition called castration-resistant prostate cancer (CRPC). Further complicating the matter, CRPC is a disease that affects a variety of patients differently, which can be problematic for physicians to provide standardized treatments with similar outcomes. AAs with CRPC can experience significantly lower rates of overall survival, faster rates of tumor progression, and poor responses to chemotherapy compared to EAs with this disease. We previously showed that CXCL13:CXCR5 axis plays a role in PCa pathobiology and is also associated with PCa aggressiveness; CXCR5 signaling mediates PCa cell growth, migration, invasion, and docetaxel resistance. To further understand the implication of CXCR5-CXCL13 in CRPC, we characterize the reason behind the health disparities seen across groups of PCa patients by evaluating the difference in regulatory molecules (miRNAs) on CXCL13-CXCR5 signaling. We found the expression profile of CXCL13 and CXCR5 RNA to be associated with miRNAs (miR-140-3p.1, miR-24-3p, miR-200c, miR-221-3p/22-3p, miR-192-5p/215-5p, miR-214-5p). Using RNA-seq datasets from the Gene Expression Omnibus (GEO) and the Sequence Read Archive (SRA), CXCL13 and CXCR5 RNA as well as associated miRNAs (miR-140-3p.1, miR-24-3p, miR-221-3p/22-3p, miR-192-5p/215-5p, and miR-214-5p) were defined by etiologic disparities among PCa patients; this correlation is different among AA men compared to EA men. Understanding PCa and specifically CRPC disparities requires a better understanding of the race-specific differences in prostate tumor biology, molecules leading to prostate inflammation, and the mechanisms associated with CRPC therapeutic resistance and its aggressive phenotype. Citation Format: Adaugo Queen Ohandjo, Courtney Dill, Chen Dongquan, James W. Lillard, Jr.. Regulation of CXCR5-CXCL13 signaling in prostate cancer etiologic disparities [abstract]. In: Proceedings of the Tenth AACR Conference on the Science of Cancer Health Disparities in Racial/Ethnic Minorities and the Medically Underserved; 2017 Sep 25-28; Atlanta, GA. Philadelphia (PA): AACR; Cancer Epidemiol Biomarkers Prev 2018;27(7 Suppl):Abstract nr B56.