基于GAN重构和SNES优化的散射介质图像恢复

Pengfei Qi, Yuanjin Zheng
{"title":"基于GAN重构和SNES优化的散射介质图像恢复","authors":"Pengfei Qi, Yuanjin Zheng","doi":"10.1109/AICAS57966.2023.10168553","DOIUrl":null,"url":null,"abstract":"Optical image recovery through scattering media is a significant yet challenging problem. Iterative wavefront shaping is one of the powerful tools to re-distribute the diffusive light and compensate for the diffuser by controlling the incident wavefront. However, in the scenario that only a feedback signal on the camera can be obtained, this technology would fail due to the lack of target images. In this paper, we propose a new scheme for recovering images through scattering media in an absence of target images. In particular, we employ an improved Generative Adversarial Network (GAN) for computational reconstruction and separable natural evolution strategy (SNES) for wavefront shaping optimization. Both simulation and experimental results suggest that the proposed scheme will open up new opportunities in the applications of biomedical imaging, optical encryption, holographic display, etc.","PeriodicalId":296649,"journal":{"name":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"324 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Recovery Through Scattering Media via GAN Reconstruction and SNES Optimization\",\"authors\":\"Pengfei Qi, Yuanjin Zheng\",\"doi\":\"10.1109/AICAS57966.2023.10168553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical image recovery through scattering media is a significant yet challenging problem. Iterative wavefront shaping is one of the powerful tools to re-distribute the diffusive light and compensate for the diffuser by controlling the incident wavefront. However, in the scenario that only a feedback signal on the camera can be obtained, this technology would fail due to the lack of target images. In this paper, we propose a new scheme for recovering images through scattering media in an absence of target images. In particular, we employ an improved Generative Adversarial Network (GAN) for computational reconstruction and separable natural evolution strategy (SNES) for wavefront shaping optimization. Both simulation and experimental results suggest that the proposed scheme will open up new opportunities in the applications of biomedical imaging, optical encryption, holographic display, etc.\",\"PeriodicalId\":296649,\"journal\":{\"name\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"324 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS57966.2023.10168553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 5th International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS57966.2023.10168553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过散射介质恢复光学图像是一个重要而又具有挑战性的问题。迭代波前整形是通过控制入射波前对漫射光进行再分布和补偿漫射光的有力工具之一。但是,在只能获得相机上的反馈信号的情况下,由于缺乏目标图像,该技术将失败。本文提出了一种在没有目标图像的情况下利用散射介质恢复图像的新方案。特别是,我们采用改进的生成对抗网络(GAN)进行计算重建,并采用可分离自然进化策略(SNES)进行波前整形优化。仿真和实验结果表明,该方案将在生物医学成像、光学加密、全息显示等领域开辟新的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Recovery Through Scattering Media via GAN Reconstruction and SNES Optimization
Optical image recovery through scattering media is a significant yet challenging problem. Iterative wavefront shaping is one of the powerful tools to re-distribute the diffusive light and compensate for the diffuser by controlling the incident wavefront. However, in the scenario that only a feedback signal on the camera can be obtained, this technology would fail due to the lack of target images. In this paper, we propose a new scheme for recovering images through scattering media in an absence of target images. In particular, we employ an improved Generative Adversarial Network (GAN) for computational reconstruction and separable natural evolution strategy (SNES) for wavefront shaping optimization. Both simulation and experimental results suggest that the proposed scheme will open up new opportunities in the applications of biomedical imaging, optical encryption, holographic display, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synaptic metaplasticity with multi-level memristive devices Unsupervised Learning of Spike-Timing-Dependent Plasticity Based on a Neuromorphic Implementation A Fully Differential 4-Bit Analog Compute-In-Memory Architecture for Inference Application Convergent Waveform Relaxation Schemes for the Transient Analysis of Associative ReLU Arrays Performance Assessment of an Extremely Energy-Efficient Binary Neural Network Using Adiabatic Superconductor Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1