基于深度神经网络的快速地形自适应运动生成

Moonwon Yu, Byungjun Kwon, Jongmin Kim, Shinjin Kang, Hanyoung Jang
{"title":"基于深度神经网络的快速地形自适应运动生成","authors":"Moonwon Yu, Byungjun Kwon, Jongmin Kim, Shinjin Kang, Hanyoung Jang","doi":"10.1145/3355088.3365157","DOIUrl":null,"url":null,"abstract":"We propose a fast motion adaptation framework using deep neural networks. Traditionally, motion adaptation is performed via iterative numerical optimization. We adopted deep neural networks and replaced the iterative process with the feed-forward inference consisting of simple matrix multiplications. For efficient mapping from contact constraints to character motion, the proposed system is composed of two types of networks: trajectory and pose generators. The networks are trained using augmented motion capture data and are fine-tuned using the inverse kinematics loss. In experiments, our system successfully generates multi-contact motions of a hundred of characters in real-time, and the result motions contain the naturalness existing in the motion capture data.","PeriodicalId":435930,"journal":{"name":"SIGGRAPH Asia 2019 Technical Briefs","volume":"753 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast Terrain-Adaptive Motion Generation using Deep Neural Networks\",\"authors\":\"Moonwon Yu, Byungjun Kwon, Jongmin Kim, Shinjin Kang, Hanyoung Jang\",\"doi\":\"10.1145/3355088.3365157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a fast motion adaptation framework using deep neural networks. Traditionally, motion adaptation is performed via iterative numerical optimization. We adopted deep neural networks and replaced the iterative process with the feed-forward inference consisting of simple matrix multiplications. For efficient mapping from contact constraints to character motion, the proposed system is composed of two types of networks: trajectory and pose generators. The networks are trained using augmented motion capture data and are fine-tuned using the inverse kinematics loss. In experiments, our system successfully generates multi-contact motions of a hundred of characters in real-time, and the result motions contain the naturalness existing in the motion capture data.\",\"PeriodicalId\":435930,\"journal\":{\"name\":\"SIGGRAPH Asia 2019 Technical Briefs\",\"volume\":\"753 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2019 Technical Briefs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3355088.3365157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2019 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355088.3365157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于深度神经网络的快速运动自适应框架。传统上,运动自适应是通过迭代数值优化来实现的。我们采用深度神经网络,用由简单矩阵乘法组成的前馈推理取代迭代过程。为了从接触约束到角色运动的有效映射,提出的系统由两种类型的网络组成:轨迹和姿态生成器。网络使用增强运动捕捉数据进行训练,并使用逆运动学损失进行微调。在实验中,我们的系统成功地实时生成了100个字符的多接触动作,结果动作包含了动作捕捉数据中存在的自然性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Terrain-Adaptive Motion Generation using Deep Neural Networks
We propose a fast motion adaptation framework using deep neural networks. Traditionally, motion adaptation is performed via iterative numerical optimization. We adopted deep neural networks and replaced the iterative process with the feed-forward inference consisting of simple matrix multiplications. For efficient mapping from contact constraints to character motion, the proposed system is composed of two types of networks: trajectory and pose generators. The networks are trained using augmented motion capture data and are fine-tuned using the inverse kinematics loss. In experiments, our system successfully generates multi-contact motions of a hundred of characters in real-time, and the result motions contain the naturalness existing in the motion capture data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faster RPNN: Rendering Clouds with Latent Space Light Probes Flexible Ray Traversal with an Extended Programming Model Augmented Reality Guided Respiratory Liver Tumors Punctures: A Preliminary Feasibility Study Beyond the Screen Embedded Concave Micromirror Array-based See-through Light Field Near-eye Display
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1