Moonwon Yu, Byungjun Kwon, Jongmin Kim, Shinjin Kang, Hanyoung Jang
{"title":"基于深度神经网络的快速地形自适应运动生成","authors":"Moonwon Yu, Byungjun Kwon, Jongmin Kim, Shinjin Kang, Hanyoung Jang","doi":"10.1145/3355088.3365157","DOIUrl":null,"url":null,"abstract":"We propose a fast motion adaptation framework using deep neural networks. Traditionally, motion adaptation is performed via iterative numerical optimization. We adopted deep neural networks and replaced the iterative process with the feed-forward inference consisting of simple matrix multiplications. For efficient mapping from contact constraints to character motion, the proposed system is composed of two types of networks: trajectory and pose generators. The networks are trained using augmented motion capture data and are fine-tuned using the inverse kinematics loss. In experiments, our system successfully generates multi-contact motions of a hundred of characters in real-time, and the result motions contain the naturalness existing in the motion capture data.","PeriodicalId":435930,"journal":{"name":"SIGGRAPH Asia 2019 Technical Briefs","volume":"753 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast Terrain-Adaptive Motion Generation using Deep Neural Networks\",\"authors\":\"Moonwon Yu, Byungjun Kwon, Jongmin Kim, Shinjin Kang, Hanyoung Jang\",\"doi\":\"10.1145/3355088.3365157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a fast motion adaptation framework using deep neural networks. Traditionally, motion adaptation is performed via iterative numerical optimization. We adopted deep neural networks and replaced the iterative process with the feed-forward inference consisting of simple matrix multiplications. For efficient mapping from contact constraints to character motion, the proposed system is composed of two types of networks: trajectory and pose generators. The networks are trained using augmented motion capture data and are fine-tuned using the inverse kinematics loss. In experiments, our system successfully generates multi-contact motions of a hundred of characters in real-time, and the result motions contain the naturalness existing in the motion capture data.\",\"PeriodicalId\":435930,\"journal\":{\"name\":\"SIGGRAPH Asia 2019 Technical Briefs\",\"volume\":\"753 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2019 Technical Briefs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3355088.3365157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2019 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3355088.3365157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast Terrain-Adaptive Motion Generation using Deep Neural Networks
We propose a fast motion adaptation framework using deep neural networks. Traditionally, motion adaptation is performed via iterative numerical optimization. We adopted deep neural networks and replaced the iterative process with the feed-forward inference consisting of simple matrix multiplications. For efficient mapping from contact constraints to character motion, the proposed system is composed of two types of networks: trajectory and pose generators. The networks are trained using augmented motion capture data and are fine-tuned using the inverse kinematics loss. In experiments, our system successfully generates multi-contact motions of a hundred of characters in real-time, and the result motions contain the naturalness existing in the motion capture data.