有效的,上下文敏感的检测现实世界的语义攻击

Michael D. Bond, Varun Srivastava, K. McKinley, Vitaly Shmatikov
{"title":"有效的,上下文敏感的检测现实世界的语义攻击","authors":"Michael D. Bond, Varun Srivastava, K. McKinley, Vitaly Shmatikov","doi":"10.1145/1814217.1814218","DOIUrl":null,"url":null,"abstract":"Software developers are increasingly choosing memory-safe languages. As a result, semantic vulnerabilities---omitted security checks, misconfigured security policies, and other software design errors---are supplanting memory-corruption exploits as the primary cause of security violations. Semantic attacks are difficult to detect because they violate program semantics, rather than language semantics. This paper presents Pecan, a new dynamic anomaly detector. Pecan identifies unusual program behavior using history sensitivity and depth-limited context sensitivity. Prior work on context-sensitive anomaly detection relied on stack-walking, which incurs overheads of 50% to over 200%. By contrast, the average overhead of Pecan is 5%, which is low enough for practical deployment. We evaluate Pecan on four representative real-world attacks from security vulnerability reports. These attacks exploit subtle bugs in Java applications and libraries, using legal program executions that nevertheless violate programmers' expectations. Anomaly detection must balance precision and sensitivity: high sensitivity leads to many benign behaviors appearing anomalous (false positives), while low sensitivity may miss attacks. With application-specific tuning, Pecan efficiently tracks depth-limited context and history and reports few false positives.","PeriodicalId":119000,"journal":{"name":"ACM Workshop on Programming Languages and Analysis for Security","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Efficient, context-sensitive detection of real-world semantic attacks\",\"authors\":\"Michael D. Bond, Varun Srivastava, K. McKinley, Vitaly Shmatikov\",\"doi\":\"10.1145/1814217.1814218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software developers are increasingly choosing memory-safe languages. As a result, semantic vulnerabilities---omitted security checks, misconfigured security policies, and other software design errors---are supplanting memory-corruption exploits as the primary cause of security violations. Semantic attacks are difficult to detect because they violate program semantics, rather than language semantics. This paper presents Pecan, a new dynamic anomaly detector. Pecan identifies unusual program behavior using history sensitivity and depth-limited context sensitivity. Prior work on context-sensitive anomaly detection relied on stack-walking, which incurs overheads of 50% to over 200%. By contrast, the average overhead of Pecan is 5%, which is low enough for practical deployment. We evaluate Pecan on four representative real-world attacks from security vulnerability reports. These attacks exploit subtle bugs in Java applications and libraries, using legal program executions that nevertheless violate programmers' expectations. Anomaly detection must balance precision and sensitivity: high sensitivity leads to many benign behaviors appearing anomalous (false positives), while low sensitivity may miss attacks. With application-specific tuning, Pecan efficiently tracks depth-limited context and history and reports few false positives.\",\"PeriodicalId\":119000,\"journal\":{\"name\":\"ACM Workshop on Programming Languages and Analysis for Security\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Workshop on Programming Languages and Analysis for Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1814217.1814218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Workshop on Programming Languages and Analysis for Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1814217.1814218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

软件开发人员越来越多地选择内存安全的语言。因此,语义漏洞——遗漏的安全检查、错误配置的安全策略和其他软件设计错误——正在取代内存破坏漏洞,成为违反安全的主要原因。语义攻击很难检测,因为它们违反的是程序语义,而不是语言语义。本文介绍了一种新的动态异常检测器Pecan。Pecan使用历史敏感性和深度限制的上下文敏感性来识别异常的程序行为。之前的上下文敏感异常检测工作依赖于堆栈遍历,这会导致50%到200%以上的开销。相比之下,Pecan的平均开销为5%,对于实际部署来说已经足够低了。我们从安全漏洞报告中评估了四种具有代表性的真实攻击。这些攻击利用Java应用程序和库中的细微错误,使用合法的程序执行,但违背了程序员的期望。异常检测必须平衡精度和灵敏度,高灵敏度导致许多良性行为出现异常(误报),低灵敏度则可能漏诊攻击。通过特定于应用程序的调优,Pecan可以有效地跟踪深度有限的上下文和历史,并报告很少的误报。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient, context-sensitive detection of real-world semantic attacks
Software developers are increasingly choosing memory-safe languages. As a result, semantic vulnerabilities---omitted security checks, misconfigured security policies, and other software design errors---are supplanting memory-corruption exploits as the primary cause of security violations. Semantic attacks are difficult to detect because they violate program semantics, rather than language semantics. This paper presents Pecan, a new dynamic anomaly detector. Pecan identifies unusual program behavior using history sensitivity and depth-limited context sensitivity. Prior work on context-sensitive anomaly detection relied on stack-walking, which incurs overheads of 50% to over 200%. By contrast, the average overhead of Pecan is 5%, which is low enough for practical deployment. We evaluate Pecan on four representative real-world attacks from security vulnerability reports. These attacks exploit subtle bugs in Java applications and libraries, using legal program executions that nevertheless violate programmers' expectations. Anomaly detection must balance precision and sensitivity: high sensitivity leads to many benign behaviors appearing anomalous (false positives), while low sensitivity may miss attacks. With application-specific tuning, Pecan efficiently tracks depth-limited context and history and reports few false positives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faceted execution of policy-agnostic programs Position paper: the science of boxing Knowledge inference for optimizing secure multi-party computation Fault-tolerant non-interference: invited talk abstract WEBLOG: a declarative language for secure web development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1