基于深度不确定度评估的场景自动提取

Pedro Correia, J. Chautru, Y. Meric, F. Geffroy, H. Binet, P. Ruffo, L. Bazzana
{"title":"基于深度不确定度评估的场景自动提取","authors":"Pedro Correia, J. Chautru, Y. Meric, F. Geffroy, H. Binet, P. Ruffo, L. Bazzana","doi":"10.3997/2214-4609.201902184","DOIUrl":null,"url":null,"abstract":"Summary The structurally lowest point in a hydrocarbon trap that can retain hydrocarbons is called a Spill Point and characterizing these locations over a depth horizon is a common approach in trap analysis. However, a horizon is an uncertain object typically produced through a time to depth conversion procedure which might involve several different variables like time, velocity, and fault position. Each of those variables brings its own uncertainty. By using geostatistical simulations, we produce different realizations of the depth horizons and further process them individually to determine the probability of presence of reservoirs and spill points associated to highly probable reservoirs. This paper presents a methodology to achieve such results including our analysis algorithm for trap and spill point characterization. By using a case-study we demonstrate that only proper characterization of all relevant realizations in the uncertainty space show us the possible scenarios, and their impact on traps volume.","PeriodicalId":186806,"journal":{"name":"Petroleum Geostatistics 2019","volume":"165 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Scenarios Extraction from Depth Uncertainty Evaluation\",\"authors\":\"Pedro Correia, J. Chautru, Y. Meric, F. Geffroy, H. Binet, P. Ruffo, L. Bazzana\",\"doi\":\"10.3997/2214-4609.201902184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary The structurally lowest point in a hydrocarbon trap that can retain hydrocarbons is called a Spill Point and characterizing these locations over a depth horizon is a common approach in trap analysis. However, a horizon is an uncertain object typically produced through a time to depth conversion procedure which might involve several different variables like time, velocity, and fault position. Each of those variables brings its own uncertainty. By using geostatistical simulations, we produce different realizations of the depth horizons and further process them individually to determine the probability of presence of reservoirs and spill points associated to highly probable reservoirs. This paper presents a methodology to achieve such results including our analysis algorithm for trap and spill point characterization. By using a case-study we demonstrate that only proper characterization of all relevant realizations in the uncertainty space show us the possible scenarios, and their impact on traps volume.\",\"PeriodicalId\":186806,\"journal\":{\"name\":\"Petroleum Geostatistics 2019\",\"volume\":\"165 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Geostatistics 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3997/2214-4609.201902184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Geostatistics 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201902184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

油气圈闭中能够留住油气的结构最低点被称为溢油点,圈闭分析中常用的方法是在深度水平面上描述这些位置。然而,水平是一个不确定的对象,通常是通过时间到深度的转换过程产生的,这可能涉及到几个不同的变量,如时间、速度和断层位置。每一个变量都有自己的不确定性。通过使用地质统计学模拟,我们产生了不同的深度层,并进一步对它们进行单独处理,以确定储层存在的概率以及与极有可能的储层相关的泄漏点。本文提出了一种方法来实现这样的结果,包括我们的陷阱和溢出点表征的分析算法。通过一个案例研究,我们证明了只有在不确定性空间中对所有相关实现的适当描述才能向我们展示可能的情景,以及它们对圈闭体积的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Scenarios Extraction from Depth Uncertainty Evaluation
Summary The structurally lowest point in a hydrocarbon trap that can retain hydrocarbons is called a Spill Point and characterizing these locations over a depth horizon is a common approach in trap analysis. However, a horizon is an uncertain object typically produced through a time to depth conversion procedure which might involve several different variables like time, velocity, and fault position. Each of those variables brings its own uncertainty. By using geostatistical simulations, we produce different realizations of the depth horizons and further process them individually to determine the probability of presence of reservoirs and spill points associated to highly probable reservoirs. This paper presents a methodology to achieve such results including our analysis algorithm for trap and spill point characterization. By using a case-study we demonstrate that only proper characterization of all relevant realizations in the uncertainty space show us the possible scenarios, and their impact on traps volume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Forward Model Applied to Channelized Turbidite Systems: A Case Study of the Benin Major Valley Fill Stochastic Seismic Inversion Based on a Fuzzy Model A Bayesian Approach for Full-waveform Inversion Using Wide-aperture Seismic Data Ensemble-based Kernel Learning to Handle Rock-physics-model Imperfection in Seismic History Matching: A Real Field Case Study Features of Factor Models in Seismic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1