考虑耦合效应的螺栓连接接触刚度建模

Yiwei Ma, Yanling Tian, Xianping Liu
{"title":"考虑耦合效应的螺栓连接接触刚度建模","authors":"Yiwei Ma, Yanling Tian, Xianping Liu","doi":"10.1109/3M-NANO56083.2022.9941544","DOIUrl":null,"url":null,"abstract":"This study presents the analytical normal and tangential stiffness model of bolted joints considering the coupling effects. Firstly, the stress distribution model within the contact area is proposed with the assistance of finite element analysis (FEA). Then, using the fractal theory and Hertz contact theory, the contact models of single asperity and multi asperities are derived, resulting in the normal and tangential stiffness expression of bolted joints by integrating the contact area. In this model, the largest microcontact area is solved from the contact stress model. Finally, the effects of resultant forces, fractal parameters, material property, and coupling are investigated and analyzed. The proposed model is hugely efficient for predicting the stiffness of fixed joints in machine tools and guiding the optimal functional design under the framework of virtual machine tools.","PeriodicalId":370631,"journal":{"name":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contact Stiffness Modeling of Bolted Joints Considering the Coupling Effects\",\"authors\":\"Yiwei Ma, Yanling Tian, Xianping Liu\",\"doi\":\"10.1109/3M-NANO56083.2022.9941544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents the analytical normal and tangential stiffness model of bolted joints considering the coupling effects. Firstly, the stress distribution model within the contact area is proposed with the assistance of finite element analysis (FEA). Then, using the fractal theory and Hertz contact theory, the contact models of single asperity and multi asperities are derived, resulting in the normal and tangential stiffness expression of bolted joints by integrating the contact area. In this model, the largest microcontact area is solved from the contact stress model. Finally, the effects of resultant forces, fractal parameters, material property, and coupling are investigated and analyzed. The proposed model is hugely efficient for predicting the stiffness of fixed joints in machine tools and guiding the optimal functional design under the framework of virtual machine tools.\",\"PeriodicalId\":370631,\"journal\":{\"name\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO56083.2022.9941544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO56083.2022.9941544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了考虑耦合效应的螺栓连接法向和切向刚度解析模型。首先,利用有限元分析方法建立了接触区域内的应力分布模型;然后,利用分形理论和赫兹接触理论,推导了单凸点和多凸点的接触模型,通过对接触面积积分得到螺栓连接的法向和切向刚度表达式;在该模型中,由接触应力模型求解最大微接触面积。最后,对合力、分形参数、材料性能和耦合等因素的影响进行了研究和分析。该模型对于虚拟机床框架下的机床固定关节刚度预测和指导功能优化设计具有很高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contact Stiffness Modeling of Bolted Joints Considering the Coupling Effects
This study presents the analytical normal and tangential stiffness model of bolted joints considering the coupling effects. Firstly, the stress distribution model within the contact area is proposed with the assistance of finite element analysis (FEA). Then, using the fractal theory and Hertz contact theory, the contact models of single asperity and multi asperities are derived, resulting in the normal and tangential stiffness expression of bolted joints by integrating the contact area. In this model, the largest microcontact area is solved from the contact stress model. Finally, the effects of resultant forces, fractal parameters, material property, and coupling are investigated and analyzed. The proposed model is hugely efficient for predicting the stiffness of fixed joints in machine tools and guiding the optimal functional design under the framework of virtual machine tools.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Buffer Solution and Concentration on AFM Imaging of DNA Molecules Electrochemical Dissolution Behavior of GH4169 and K418 Superalloy in NaNO3 Solution at Low Current Density A Stiffness-tunable MEMS Accelerometer with In-operation Drift Compensation Kinematic Calibration in Local Assembly Space of a Six-axis Industrial Robot for Precise Assembly Design and Analysis of Novel Millimetre-level Compliant Constant-force Mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1