{"title":"利用核特征人脸识别人脸","authors":"Naval, C. Prospero","doi":"10.3860/PCJ.V1I1.214","DOIUrl":null,"url":null,"abstract":"In face recognition, Principal Component Analysis (PCA) is often used to extract a low dimensional face representation based on the eigenvector of the face image autocorrelation matrix. Kernel Principal Component Analysis (Kernel PCA) has recently been proposed as a non-linear extension of PCA. While PCA is able to discover and represent linearly embedded manifolds, Kernel PCA can extract low dimensional non-linearly embedded manifolds from data, thus providing a more suitable recognition by a classifier. We provide experimental evidence which show that Kernel PCA performs better than PCA on the ATT Face Dataset when both are used with a lienar Support Vecter Machine Classifier. Philippine Computing Journal 1(1) 2006 27-30","PeriodicalId":391026,"journal":{"name":"Philippine Computing Journal","volume":"721 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recognizing Faces Using Kernel Eigenfaces\",\"authors\":\"Naval, C. Prospero\",\"doi\":\"10.3860/PCJ.V1I1.214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In face recognition, Principal Component Analysis (PCA) is often used to extract a low dimensional face representation based on the eigenvector of the face image autocorrelation matrix. Kernel Principal Component Analysis (Kernel PCA) has recently been proposed as a non-linear extension of PCA. While PCA is able to discover and represent linearly embedded manifolds, Kernel PCA can extract low dimensional non-linearly embedded manifolds from data, thus providing a more suitable recognition by a classifier. We provide experimental evidence which show that Kernel PCA performs better than PCA on the ATT Face Dataset when both are used with a lienar Support Vecter Machine Classifier. Philippine Computing Journal 1(1) 2006 27-30\",\"PeriodicalId\":391026,\"journal\":{\"name\":\"Philippine Computing Journal\",\"volume\":\"721 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philippine Computing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3860/PCJ.V1I1.214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philippine Computing Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3860/PCJ.V1I1.214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
在人脸识别中,基于人脸图像自相关矩阵的特征向量,通常采用主成分分析(PCA)来提取低维的人脸表示。核主成分分析(Kernel Principal Component Analysis, PCA)是近年来提出的一种非线性主成分分析方法。PCA能够发现和表示线性嵌入流形,而核PCA能够从数据中提取低维非线性嵌入流形,从而提供更合适的分类器识别。我们提供的实验证据表明,当核主成分分析与线性支持向量机分类器一起使用时,核主成分分析在ATT人脸数据集上的表现优于主成分分析。菲律宾计算机学报1(1)2006 27-30
In face recognition, Principal Component Analysis (PCA) is often used to extract a low dimensional face representation based on the eigenvector of the face image autocorrelation matrix. Kernel Principal Component Analysis (Kernel PCA) has recently been proposed as a non-linear extension of PCA. While PCA is able to discover and represent linearly embedded manifolds, Kernel PCA can extract low dimensional non-linearly embedded manifolds from data, thus providing a more suitable recognition by a classifier. We provide experimental evidence which show that Kernel PCA performs better than PCA on the ATT Face Dataset when both are used with a lienar Support Vecter Machine Classifier. Philippine Computing Journal 1(1) 2006 27-30