P. Prempraneerach, S. Brizzolara, G. Karniadakis, C. Chryssostomidis
{"title":"碰撞回退操作集成仿真框架","authors":"P. Prempraneerach, S. Brizzolara, G. Karniadakis, C. Chryssostomidis","doi":"10.1109/ESTS.2013.6523732","DOIUrl":null,"url":null,"abstract":"We present a comparison of performance of an all-electric-ship (AES) simulator using two different approaches to control the induction machine in forward as well as in cash astern operations. The first approach uses a constant-slip control while the second uses direct-torque control. We also investigate the use of proper breaking resistors required for minimal power dissipation during the crash astern operation. The AES simulator describes a medium voltage DC system (MVDC) for the USS DDG-51 Arleigh Burke-Class destroyer.","PeriodicalId":119318,"journal":{"name":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated simulation framework for crash back operation\",\"authors\":\"P. Prempraneerach, S. Brizzolara, G. Karniadakis, C. Chryssostomidis\",\"doi\":\"10.1109/ESTS.2013.6523732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a comparison of performance of an all-electric-ship (AES) simulator using two different approaches to control the induction machine in forward as well as in cash astern operations. The first approach uses a constant-slip control while the second uses direct-torque control. We also investigate the use of proper breaking resistors required for minimal power dissipation during the crash astern operation. The AES simulator describes a medium voltage DC system (MVDC) for the USS DDG-51 Arleigh Burke-Class destroyer.\",\"PeriodicalId\":119318,\"journal\":{\"name\":\"2013 IEEE Electric Ship Technologies Symposium (ESTS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Electric Ship Technologies Symposium (ESTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTS.2013.6523732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTS.2013.6523732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integrated simulation framework for crash back operation
We present a comparison of performance of an all-electric-ship (AES) simulator using two different approaches to control the induction machine in forward as well as in cash astern operations. The first approach uses a constant-slip control while the second uses direct-torque control. We also investigate the use of proper breaking resistors required for minimal power dissipation during the crash astern operation. The AES simulator describes a medium voltage DC system (MVDC) for the USS DDG-51 Arleigh Burke-Class destroyer.