修剪简单的模型集,快速准确地恢复图像

Basarab Matei, Younès Bennani
{"title":"修剪简单的模型集,快速准确地恢复图像","authors":"Basarab Matei, Younès Bennani","doi":"10.1109/ICDMW.2015.54","DOIUrl":null,"url":null,"abstract":"Reconstruction of image can be defined as the general problem of estimating a two-dimensional object from a partial version of this object (a limited set of \"projections\"). In this paper, we propose new approach for image reconstruction based onsimple quasicrystals and L1 minimisation. We discuss the exact reconstruction of an image supposed to have small spectra. We show that simple model sets may be used as sampling set for exact recovery. Moreover, by eliminating a finite number of points from the simple model sets we still have exact recovery. This last aspect is very important for practical applications, e.g. lossy compression. We run our approch on benchmark images data sets and show that the quasicrystal sampling is more performant than the random uniform in terms of time execution when the dimension of the input image increases.","PeriodicalId":192888,"journal":{"name":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pruned Simple Model Sets for Fast Exact Recovery of Image\",\"authors\":\"Basarab Matei, Younès Bennani\",\"doi\":\"10.1109/ICDMW.2015.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconstruction of image can be defined as the general problem of estimating a two-dimensional object from a partial version of this object (a limited set of \\\"projections\\\"). In this paper, we propose new approach for image reconstruction based onsimple quasicrystals and L1 minimisation. We discuss the exact reconstruction of an image supposed to have small spectra. We show that simple model sets may be used as sampling set for exact recovery. Moreover, by eliminating a finite number of points from the simple model sets we still have exact recovery. This last aspect is very important for practical applications, e.g. lossy compression. We run our approch on benchmark images data sets and show that the quasicrystal sampling is more performant than the random uniform in terms of time execution when the dimension of the input image increases.\",\"PeriodicalId\":192888,\"journal\":{\"name\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Data Mining Workshop (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2015.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Data Mining Workshop (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2015.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像重建可以定义为从该对象的部分版本(有限的“投影”集)估计二维对象的一般问题。在本文中,我们提出了基于简单准晶体和L1最小化的图像重建新方法。我们讨论了假设具有小光谱的图像的精确重建。我们证明了简单的模型集可以作为精确恢复的采样集。此外,通过从简单模型集中消除有限数量的点,我们仍然有精确的恢复。最后一个方面对于实际应用非常重要,例如有损压缩。我们在基准图像数据集上运行了我们的方法,并表明当输入图像的维数增加时,准晶体采样在执行时间方面比随机均匀采样性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pruned Simple Model Sets for Fast Exact Recovery of Image
Reconstruction of image can be defined as the general problem of estimating a two-dimensional object from a partial version of this object (a limited set of "projections"). In this paper, we propose new approach for image reconstruction based onsimple quasicrystals and L1 minimisation. We discuss the exact reconstruction of an image supposed to have small spectra. We show that simple model sets may be used as sampling set for exact recovery. Moreover, by eliminating a finite number of points from the simple model sets we still have exact recovery. This last aspect is very important for practical applications, e.g. lossy compression. We run our approch on benchmark images data sets and show that the quasicrystal sampling is more performant than the random uniform in terms of time execution when the dimension of the input image increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Linear Support Vector Ordinal Regression Solver Joint Recovery and Representation Learning for Robust Correlation Estimation Based on Partially Observed Data Accurate Classification of Biological Data Using Ensembles Large-Scale Unusual Time Series Detection Sentiment Polarity Classification Using Structural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1