研究密室逃生的推荐算法

Sagi Bazinin, Guy Shani
{"title":"研究密室逃生的推荐算法","authors":"Sagi Bazinin, Guy Shani","doi":"10.1142/S2196888819500209","DOIUrl":null,"url":null,"abstract":"An escape room is a physical puzzle solving game, where participants solve a series of riddles within a limited time to exit a locked room. Escape rooms differ in their theme, environment, and difficulty, and people hence often differ on their preferences over escape rooms. As such, recommendation systems can help people in deciding which room to visit. In this paper, we describe the properties of the escape rooms recommendation problem, with respect to other popular recommendation problems. We describe a dataset of reviews collected within a current system. We provide an empirical comparison between a set of recommendation algorithms over two problems, top-N recommendation and rating prediction. In both cases, a KNN method performed the best.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Recommendation Algorithms for Escape Rooms\",\"authors\":\"Sagi Bazinin, Guy Shani\",\"doi\":\"10.1142/S2196888819500209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An escape room is a physical puzzle solving game, where participants solve a series of riddles within a limited time to exit a locked room. Escape rooms differ in their theme, environment, and difficulty, and people hence often differ on their preferences over escape rooms. As such, recommendation systems can help people in deciding which room to visit. In this paper, we describe the properties of the escape rooms recommendation problem, with respect to other popular recommendation problems. We describe a dataset of reviews collected within a current system. We provide an empirical comparison between a set of recommendation algorithms over two problems, top-N recommendation and rating prediction. In both cases, a KNN method performed the best.\",\"PeriodicalId\":256649,\"journal\":{\"name\":\"Vietnam. J. Comput. Sci.\",\"volume\":\"245 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam. J. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2196888819500209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2196888819500209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

密室逃生是一种物理解谜游戏,参与者在有限的时间内解决一系列谜题,以逃离一个锁着的房间。逃生室的主题、环境和难度各不相同,因此人们对逃生室的偏好也不同。因此,推荐系统可以帮助人们决定参观哪个房间。在本文中,我们描述了密室推荐问题的性质,相对于其他流行的推荐问题。我们描述了在当前系统中收集的评论数据集。我们在top-N推荐和评级预测两个问题上对一组推荐算法进行了实证比较。在这两种情况下,KNN方法表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating Recommendation Algorithms for Escape Rooms
An escape room is a physical puzzle solving game, where participants solve a series of riddles within a limited time to exit a locked room. Escape rooms differ in their theme, environment, and difficulty, and people hence often differ on their preferences over escape rooms. As such, recommendation systems can help people in deciding which room to visit. In this paper, we describe the properties of the escape rooms recommendation problem, with respect to other popular recommendation problems. We describe a dataset of reviews collected within a current system. We provide an empirical comparison between a set of recommendation algorithms over two problems, top-N recommendation and rating prediction. In both cases, a KNN method performed the best.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1