辅助人机交互中的多模态人机动作识别

I. Rodomagoulakis, N. Kardaris, Vassilis Pitsikalis, E. Mavroudi, Athanasios Katsamanis, A. Tsiami, P. Maragos
{"title":"辅助人机交互中的多模态人机动作识别","authors":"I. Rodomagoulakis, N. Kardaris, Vassilis Pitsikalis, E. Mavroudi, Athanasios Katsamanis, A. Tsiami, P. Maragos","doi":"10.1109/ICASSP.2016.7472168","DOIUrl":null,"url":null,"abstract":"Within the context of assistive robotics we develop an intelligent interface that provides multimodal sensory processing capabilities for human action recognition. Human action is considered in multimodal terms, containing inputs such as audio from microphone arrays, and visual inputs from high definition and depth cameras. Exploring state-of-the-art approaches from automatic speech recognition, and visual action recognition, we multimodally recognize actions and commands. By fusing the unimodal information streams, we obtain the optimum multimodal hypothesis which is to be further exploited by the active mobility assistance robot in the framework of the MOBOT EU research project. Evidence from recognition experiments shows that by integrating multiple sensors and modalities, we increase multimodal recognition performance in the newly acquired challenging dataset involving elderly people while interacting with the assistive robot.","PeriodicalId":165321,"journal":{"name":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Multimodal human action recognition in assistive human-robot interaction\",\"authors\":\"I. Rodomagoulakis, N. Kardaris, Vassilis Pitsikalis, E. Mavroudi, Athanasios Katsamanis, A. Tsiami, P. Maragos\",\"doi\":\"10.1109/ICASSP.2016.7472168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the context of assistive robotics we develop an intelligent interface that provides multimodal sensory processing capabilities for human action recognition. Human action is considered in multimodal terms, containing inputs such as audio from microphone arrays, and visual inputs from high definition and depth cameras. Exploring state-of-the-art approaches from automatic speech recognition, and visual action recognition, we multimodally recognize actions and commands. By fusing the unimodal information streams, we obtain the optimum multimodal hypothesis which is to be further exploited by the active mobility assistance robot in the framework of the MOBOT EU research project. Evidence from recognition experiments shows that by integrating multiple sensors and modalities, we increase multimodal recognition performance in the newly acquired challenging dataset involving elderly people while interacting with the assistive robot.\",\"PeriodicalId\":165321,\"journal\":{\"name\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2016.7472168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2016.7472168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

在辅助机器人的背景下,我们开发了一个智能接口,为人类动作识别提供多模态的感觉处理能力。人类行为以多模态的方式考虑,包括来自麦克风阵列的音频输入,以及来自高清和深度相机的视觉输入。从自动语音识别到视觉动作识别,我们探索了最先进的方法,多模态地识别动作和命令。通过融合单模态信息流,得到了最优的多模态假设,该假设将在MOBOT欧盟研究项目框架下被主动移动辅助机器人进一步利用。识别实验的证据表明,通过集成多个传感器和模态,我们在与辅助机器人交互时提高了新获得的涉及老年人的挑战性数据集的多模态识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multimodal human action recognition in assistive human-robot interaction
Within the context of assistive robotics we develop an intelligent interface that provides multimodal sensory processing capabilities for human action recognition. Human action is considered in multimodal terms, containing inputs such as audio from microphone arrays, and visual inputs from high definition and depth cameras. Exploring state-of-the-art approaches from automatic speech recognition, and visual action recognition, we multimodally recognize actions and commands. By fusing the unimodal information streams, we obtain the optimum multimodal hypothesis which is to be further exploited by the active mobility assistance robot in the framework of the MOBOT EU research project. Evidence from recognition experiments shows that by integrating multiple sensors and modalities, we increase multimodal recognition performance in the newly acquired challenging dataset involving elderly people while interacting with the assistive robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-stabilized deep neural network An acoustic keystroke transient canceler for speech communication terminals using a semi-blind adaptive filter model Data sketching for large-scale Kalman filtering Improved decoding of analog modulo block codes for noise mitigation An expectation-maximization eigenvector clustering approach to direction of arrival estimation of multiple speech sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1