半监督模糊共聚类框架及其在twitter数据分析中的应用

Katsuhiro Honda, S. Ubukata, A. Notsu, Norimitsu Takahashi, Yutaka Ishikawa
{"title":"半监督模糊共聚类框架及其在twitter数据分析中的应用","authors":"Katsuhiro Honda, S. Ubukata, A. Notsu, Norimitsu Takahashi, Yutaka Ishikawa","doi":"10.1109/ICIEV.2015.7334057","DOIUrl":null,"url":null,"abstract":"Semi-supervised clustering is an efficient scheme for utilizing data with partial class information, where unsupervised data distributions are estimated under some supports of partial supervised class information. In this paper, a novel framework for performing fuzzy co-clustering of cooccurrence information with partial supervision is proposed, which is induced by multinomial mixture concept. Co-clustering is useful for extracting object-item pair-wise clusters from cooccurrence information and has been utilized in various applications such as document-keyword analysis and customer-products purchase history data analysis. Several experimental results including a twitter data analysis demonstrate the ability of improving the classification quality of the fuzzified co-cluster structural knowledge. Then, the proposed semi-supervised framework is expected to be a powerful tool in Big Data analysis with huge volumes of data but partial supervisions only.","PeriodicalId":367355,"journal":{"name":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A semi-supervised fuzzy co-clustering framework and application to twitter data analysis\",\"authors\":\"Katsuhiro Honda, S. Ubukata, A. Notsu, Norimitsu Takahashi, Yutaka Ishikawa\",\"doi\":\"10.1109/ICIEV.2015.7334057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-supervised clustering is an efficient scheme for utilizing data with partial class information, where unsupervised data distributions are estimated under some supports of partial supervised class information. In this paper, a novel framework for performing fuzzy co-clustering of cooccurrence information with partial supervision is proposed, which is induced by multinomial mixture concept. Co-clustering is useful for extracting object-item pair-wise clusters from cooccurrence information and has been utilized in various applications such as document-keyword analysis and customer-products purchase history data analysis. Several experimental results including a twitter data analysis demonstrate the ability of improving the classification quality of the fuzzified co-cluster structural knowledge. Then, the proposed semi-supervised framework is expected to be a powerful tool in Big Data analysis with huge volumes of data but partial supervisions only.\",\"PeriodicalId\":367355,\"journal\":{\"name\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Informatics, Electronics & Vision (ICIEV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEV.2015.7334057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Informatics, Electronics & Vision (ICIEV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEV.2015.7334057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

半监督聚类是一种利用部分类信息数据的有效方法,它在部分监督类信息的支持下估计无监督数据的分布。本文利用多项混合概念,提出了一种具有部分监督的协同信息模糊共聚的新框架。协同聚类对于从协同信息中提取对象-项目成对聚类很有用,并已用于文档关键字分析和客户-产品购买历史数据分析等各种应用程序中。包括twitter数据分析在内的几个实验结果表明,模糊共聚类结构知识的分类质量得到了提高。然后,所提出的半监督框架有望成为大数据分析的强大工具,数据量巨大,但只有部分监督。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A semi-supervised fuzzy co-clustering framework and application to twitter data analysis
Semi-supervised clustering is an efficient scheme for utilizing data with partial class information, where unsupervised data distributions are estimated under some supports of partial supervised class information. In this paper, a novel framework for performing fuzzy co-clustering of cooccurrence information with partial supervision is proposed, which is induced by multinomial mixture concept. Co-clustering is useful for extracting object-item pair-wise clusters from cooccurrence information and has been utilized in various applications such as document-keyword analysis and customer-products purchase history data analysis. Several experimental results including a twitter data analysis demonstrate the ability of improving the classification quality of the fuzzified co-cluster structural knowledge. Then, the proposed semi-supervised framework is expected to be a powerful tool in Big Data analysis with huge volumes of data but partial supervisions only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Static output feedback control design for Takagi-Sugeno descriptor fuzzy systems FRIT based PI tuning for speed control of PMSM using FPGA for high frequency SiC MOSFET inverter A homogeneous region based methodology for text extraction from natural scene images People re-identification using 3D descriptor with skeleton information Development of battery-shaped device unified communication line and power line
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1