学习特征变换是一个比特征选择更容易的问题

K. Torkkola
{"title":"学习特征变换是一个比特征选择更容易的问题","authors":"K. Torkkola","doi":"10.1109/ICPR.2002.1048248","DOIUrl":null,"url":null,"abstract":"We argue that optimal feature selection is intrinsically a harder problem than learning discriminative feature transforms, provided a suitable criterion for the latter. We discuss mutual information between class labels and transformed features as such a criterion. Instead of Shannon's definition we use measures based on Renyi entropy, which lends itself into an efficient implementation and an interpretation of \"information forces\" induced by samples of data that drive the transform.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning feature transforms is an easier problem than feature selection\",\"authors\":\"K. Torkkola\",\"doi\":\"10.1109/ICPR.2002.1048248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We argue that optimal feature selection is intrinsically a harder problem than learning discriminative feature transforms, provided a suitable criterion for the latter. We discuss mutual information between class labels and transformed features as such a criterion. Instead of Shannon's definition we use measures based on Renyi entropy, which lends itself into an efficient implementation and an interpretation of \\\"information forces\\\" induced by samples of data that drive the transform.\",\"PeriodicalId\":159502,\"journal\":{\"name\":\"Object recognition supported by user interaction for service robots\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Object recognition supported by user interaction for service robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2002.1048248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们认为最优特征选择本质上是一个比学习判别特征变换更难的问题,为后者提供了一个合适的准则。我们讨论了类标签和变换后的特征之间的互信息。我们没有使用香农的定义,而是使用了基于Renyi熵的度量,它有助于有效地实现和解释由驱动转换的数据样本引起的“信息力量”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning feature transforms is an easier problem than feature selection
We argue that optimal feature selection is intrinsically a harder problem than learning discriminative feature transforms, provided a suitable criterion for the latter. We discuss mutual information between class labels and transformed features as such a criterion. Instead of Shannon's definition we use measures based on Renyi entropy, which lends itself into an efficient implementation and an interpretation of "information forces" induced by samples of data that drive the transform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pattern recognition for humanitarian de-mining Data clustering using evidence accumulation Facial expression recognition using pseudo 3-D hidden Markov models Speeding up SVM decision based on mirror points Real-time tracking and estimation of plane pose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1