资源分配的云工作负载表征和分析

Naghmeh Dezhabad, S. Ganti, G. Shoja
{"title":"资源分配的云工作负载表征和分析","authors":"Naghmeh Dezhabad, S. Ganti, G. Shoja","doi":"10.1109/CloudNet47604.2019.9064138","DOIUrl":null,"url":null,"abstract":"Cloud providers aim to efficiently deliver diverse services on demand to users. Recently, they coined the idea of an auction-based market for their resources with the goal of increasing the total revenues. To address the challenge of scheduling and pricing, we build usage profiles for cloud workloads and predict future demands. In this paper, we first present a new methodology to categorize workloads according to their resource usage. We employ a modified hierarchical clustering algorithm that gives us three demand profiles for batch jobs designated as low, medium and high. After that, we extract the number of arrival requests per time for each group. The methodology presented here provides insights to cloud service providers in optimizing resource allocation and improving profits.","PeriodicalId":340890,"journal":{"name":"2019 IEEE 8th International Conference on Cloud Networking (CloudNet)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Cloud Workload Characterization and Profiling for Resource Allocation\",\"authors\":\"Naghmeh Dezhabad, S. Ganti, G. Shoja\",\"doi\":\"10.1109/CloudNet47604.2019.9064138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud providers aim to efficiently deliver diverse services on demand to users. Recently, they coined the idea of an auction-based market for their resources with the goal of increasing the total revenues. To address the challenge of scheduling and pricing, we build usage profiles for cloud workloads and predict future demands. In this paper, we first present a new methodology to categorize workloads according to their resource usage. We employ a modified hierarchical clustering algorithm that gives us three demand profiles for batch jobs designated as low, medium and high. After that, we extract the number of arrival requests per time for each group. The methodology presented here provides insights to cloud service providers in optimizing resource allocation and improving profits.\",\"PeriodicalId\":340890,\"journal\":{\"name\":\"2019 IEEE 8th International Conference on Cloud Networking (CloudNet)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th International Conference on Cloud Networking (CloudNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudNet47604.2019.9064138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet47604.2019.9064138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

云提供商的目标是根据用户的需求高效地提供各种服务。最近,他们提出了以拍卖为基础的资源市场的想法,目标是增加总收入。为了应对计划和定价的挑战,我们为云工作负载构建了使用配置文件,并预测了未来的需求。在本文中,我们首先提出了一种根据资源使用情况对工作负载进行分类的新方法。我们采用了一种改进的分层聚类算法,该算法为批处理作业提供了三种需求概况,分别为低、中、高。之后,我们提取每个组每次到达请求的数量。本文提出的方法为云服务提供商在优化资源分配和提高利润方面提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud Workload Characterization and Profiling for Resource Allocation
Cloud providers aim to efficiently deliver diverse services on demand to users. Recently, they coined the idea of an auction-based market for their resources with the goal of increasing the total revenues. To address the challenge of scheduling and pricing, we build usage profiles for cloud workloads and predict future demands. In this paper, we first present a new methodology to categorize workloads according to their resource usage. We employ a modified hierarchical clustering algorithm that gives us three demand profiles for batch jobs designated as low, medium and high. After that, we extract the number of arrival requests per time for each group. The methodology presented here provides insights to cloud service providers in optimizing resource allocation and improving profits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preventive Start-time Optimization to Determine Link Weights against Multiple Link Failures Collaborative Traffic Measurement in Virtualized Data Center Networks A stable matching method for cloud scheduling Dynamic Sketch: Efficient and Adjustable Heavy Hitter Detection for Software Packet Processing Minimizing state access delay for cloud-native network functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1